Смежный угол к прямому углу. Что такое смежные углы? Геометрия вокруг нас

1. Смежные углы.

Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (рис. 72): ∠АВС и ∠СВD, у которых одна сторона ВС общая, а две другие, АВ и ВD, составляют прямую линию.

Два угла, у которых одна сторона общая, а две другие составляют прямую линию, называются смежными углами.

Смежные углы можно получить и таким образом: если из какой-нибудь точки прямой проведём луч (не лежащий на данной прямой), то получим смежные углы.

Например, ∠АDF и ∠FDВ - углы смежные (рис. 73).

Смежные углы могут иметь самые разнообразные положения (рис. 74).

Смежные углы в сумме составляют развёрнутый угол, поэтому сумма двух смежных углов равна 180°

Отсюда прямой угол можно определить как угол, равный своему смежному углу.

Зная величину одного из смежных углов, мы можем найти величину другого смежного с ним угла.

Например, если один из смежных углов равен 54°, то второй угол будет равен:

180° - 54° = l26°.

2. Вертикальные углы.

Если мы продолжим стороны угла за его вершину, то получим вертикальные углы. На рисунке 75 углы EOF и АОС- вертикальные; углы АОЕ и СОF - также вертикальные.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла.

Пусть ∠1 = \(\frac{7}{8}\) ⋅ 90°(рис. 76). Смежный с ним ∠2 будет равен 180° - \(\frac{7}{8}\) ⋅ 90°, т. е. 1\(\frac{1}{8}\) ⋅ 90°.

Таким же образом можно вычислить, чему равны ∠3 и ∠4.

∠3 = 180° - 1\(\frac{1}{8}\) ⋅ 90° = \(\frac{7}{8}\) ⋅ 90°;

∠4 = 180° - \(\frac{7}{8}\) ⋅ 90° = 1\(\frac{1}{8}\) ⋅ 90° (рис. 77).

Мы видим, что ∠1 = ∠3 и ∠2 = ∠4.

Можно решить ещё несколько таких же задач, и каждый раз будет получаться один и тот же результат: вертикальные углы равны между собой.

Однако, чтобы убедиться в том, что вертикальные углы всегда равны между собой, недостаточно рассмотреть отдельные числовые примеры, так как выводы, сделанные на основе частных примеров, иногда могут быть и ошибочными.

Убедиться в справедливости свойства вертикальных углов необходимо путём доказательства.

Доказательство можно провести следующим образом (рис. 78):

a + c = 180°;

b + c = 180°;

(так как сумма смежных углов равна 180°).

a + c = ∠b + c

(так как и левая часть этого равенства равна 180°, и правая его часть тоже равна 180°).

В это равенство входит один и тот же угол с .

Если мы от равных величин отнимем поровну, то и останется поровну. В результате получится: a = ∠b , т. е. вертикальные углы равны между собой.

3. Сумма углов, имеющих общую вершину.

На чертеже 79 ∠1, ∠2, ∠3 и ∠4 расположены по одну сторону прямой и имеют общую вершину на этой прямой. В сумме эти углы составляют развёрнутый угол, т. е.

∠1 + ∠2 + ∠3 + ∠4 = 180°.

На чертеже 80 ∠1, ∠2, ∠3, ∠4 и ∠5 имеют общую вершину. В сумме эти углы составляют полный угол, т. е. ∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360°.

Другие материалы

Ука-жи-те но­ме­ра вер­ных утвер-жде-ний.

1) Любые три пря­мые имеют не более одной общей точки.

2) Если угол равен 120°, то смеж­ный с ним равен 120°.

3) Если рас­сто­я­ние от точки до пря­мой боль­ше 3, то и длина любой на-клон-ной, про-ведённой из дан­ной точки к пря-мой, боль­ше 3.

Если утвер­жде­ний не-сколь-ко, за­пи­ши­те их но-ме-ра в по­ряд­ке воз-рас-та-ния.

Ре-ше-ние.

Про-ве-рим каж-дое из утвер-жде-ний.

1) «Любые три пря-мые имеют не более одной общей точки» - верно . Если пря-мые имеют две и более общих точек, то они сов-па-да-ют. (См. ком-мен-та-рии к за-да-че.)

2) «Если угол равен 120°, то смеж-ный с ним равен 120°» - не-вер-но . Сумма смеж-ных углов равна 180°.

3) «Если рас-сто-я-ние от точки до пря-мой боль-ше 3, то и длина любой на-клон-ной, про-ведённой из дан-ной точки к пря-мой, боль-ше 3» - верно . Т. к. рас-сто-я-ние - длина крат-чай-ше-го от-рез-ка до пря-мой, а все на-клон-ные - длин-нее.

Ответ: 13.

Ответ: 13

· Прототип задания ·

Гость 19.02.2015 12:42

В школь­ном учебнике Ата­на­сяна Л. С. и др. "Геометрия 7--9", "Просвещение", 2014, глава 1, па­ра­граф 1 указано следующее.

1) Ак­си­о­ма планиметрии: через любые две точки можно про­ве­сти пря­мую и при­том толь­ко одну.

2) Положение, при­ня­тое в школь­ном курсе: говоря "две точки", "три точки", "две прямые" и т. д., будем считать, что эти точки, пря­мые различны.

Вывод, ко­то­рый дол­жен усво­ить ученик: две пря­мые либо имеют толь­ко одну общую точку, либо не имеют общих точек.

Поэтому ответ на 1-й во­прос должен быть "верно". Если все три прямые совпадают, то это одна прямая, а не три.

Петр Мурзин

Было бы правильно написать в условии "любые три различные пря­мые имеют не более одной общей точки", но это не так.

Гость 10.04.2015 16:38

Уважаемый редактор!

Согласен с замечанием Гостя от 19.02.2015 по существу утверждения п. 1 данной задачи: в упомянутом Учебнике «Геометрия 7-9» (п. 1 параграфа 1, примечание 1) сказано: «здесь и в дальнейшем, говоря «две точки», «три точки», «две прямые» и т. д., будем считать, что эти точки, прямые различны».

С учетом сказанного выше, рассуждения, приведённые на сайте в решении данной задачи (в части пункта 1) , являются ошибочными, так как формулировка задачи «три прямые» подразумевает, что эти три прямые различны (т.е. не могут совпадать!). Три прямые (различные, что подразумевается по умолчанию!): либо имеют одну общую точку (которая принадлежит каждой из этих трёх прямых) -- в случае, когда три прямые пересекаются в одной точке; либо не имеют общих точек.

Подтверждением данного вывода являет вывод п. 1 параграфа 1 упомянутого учебника: «две прямые либо имеют только одну общую точку, либо не имеют общих точек». Доказательство от противного: предположим, что три прямые имеют более одной общей точки; следовательно, две из этих прямых имеют, по крайней мере, более одной общей точки (так как для этих двух прямых общими точками будут являться те, что являются общими для всех трёх прямых); но это противоречит упомянутому выводу учебника о том, что две прямые либо имеют только одну общую точку, либо не имеют общих точек.

С уважением, гость.

Служба поддержки

В процессе изучения курса геометрии понятия “угол”, “вертикальные углы”, “смежные углы” встречаются достаточно часто. Понимание каждого из терминов поможет разобраться в поставленной задаче и правильно ее решить. Что такое смежные углы и как их определять?

Смежные углы – определение понятия

Термин “смежные углы” характеризует два угла, образованных общим лучом и двумя дополнительными полупрямыми, лежащими на одной прямой. Все три луча выходят из одной точки. Общая полупрямая является одновременно стороной как одного, так и второго угла.

Смежные углы – основные свойства

1. Исходя из формулировки смежных углов, нетрудно заметить, что сумма таких углов всегда образует развернутый угол, градусная мера которого равна 180°:

  • Если μ и η являются смежными углами, то μ + η = 180°.
  • Зная величину одного из смежных углов (например, μ), можно легко вычислить градусную меру второго угла (η), используя выражение η = 180° – μ.

2. Данное свойство углов позволяет сделать следующий вывод: угол, являющийся смежным прямому углу, также будет прямым.

3. Рассматривая тригонометрический функции (sin, cos, tg, ctg), основываясь на формулах приведения для смежных углов μ и η справедливо следующее:

  • sinη = sin(180° – μ) = sinμ,
  • cosη = cos(180° – μ) = -cosμ,
  • tgη = tg(180° – μ) = -tgμ,
  • ctgη = ctg(180° – μ) = -ctgμ.


Смежные углы – примеры

Пример 1

Задан треугольник с вершинами M, P, Q – ΔMPQ. Найти углы, смежные углам ∠QMP, ∠MPQ, ∠PQM.

  • Продлим каждую из сторон треугольника прямой.
  • Зная о том, что смежные углы дополняют друг друга до развернутого угла, выясняем, что:

смежным для угла ∠QMP будет ∠LMP,

смежным для угла ∠MPQ будет ∠SPQ,

смежным для угла ∠PQM будет ∠HQP.


Пример 2

Величина одного смежного угла составляет 35°. Чему равна градусная мера второго смежного угла?

  • Два смежных угла в сумме образуют 180°.
  • Если ∠μ = 35°, то смежный ему ∠η = 180° – 35° = 145°.

Пример 3

Определить величины смежных углов, если известно, что градусная мера одного из низ втрое больше градусной меры другого угла.

  • Обозначим величину одного (меньшего) угла через – ∠μ = λ.
  • Тогда, согласно условию задачи, величина второго угла будет равна ∠η = 3λ.
  • Исходя из основного свойства смежных углов, μ + η = 180° следует

λ + 3λ = μ + η = 180°,

λ = 180°/4 = 45°.

Значит первый один угол ∠μ = λ = 45°, а второй угол ∠η = 3λ = 135°.


Умение апеллировать терминологией, а также знание основных свойств смежных углов поможет справиться с решением многих геометрических задач.

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.

Сумма смежных углов равна 180°

Теорема 1. Сумма смежных углов равна 180°.

Доказательство. Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Вертикальные углы равны

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 - смежные, углы 1 и 3 - вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

АН - перпендикуляр к прямой

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Чертежный угольник

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 - углы вертикальные; заключение - эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение - словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

Пример 1. Один из смежных углов равен 44°. Чему равен другой?

Решение. Обозначим градусную меру другого угла через x , тогда согласно теореме 1.
44° + х = 180°.
Решая полученное уравнение, находим, что х = 136°. Следовательно, другой угол равен 136°.

Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?

Решение. Углы COD и АОВ вертикальные, следовательно, по теореме 1.2 они равны, т. е. ∠ АОВ = 45°. Угол АОС смежный с углом COD, значит, по теореме 1.
∠ АОС = 180° - ∠ COD = 180° - 45° = 135°.

Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.

Решение. Обозначим градусную меру меньшего угла через х. Тогда градусная мера большего угла будет Зх. Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.
Значит, смежные углы равны 45° и 135°.

Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.

Решение. Пусть условию задачи отвечает рисунок 2. Вертикальные углы COD к АОВ равны (теорема 2), значит, равны и их градусные меры. Поэтому ∠ COD = ∠ АОВ = 50° (их сумма по условию 100°). Угол BOD (также и угол АОС) смежный с углом COD, и, значит, по теореме 1
∠ BOD = ∠ АОС = 180° - 50° = 130°.

Каждый угол, в зависимости от его величины, имеет своё название:

Вид угла Размер в градусах Пример
Острый Меньше 90°
Прямой Равен 90°.

На чертеже прямой угол, обычно обозначают символом , проведённым от одной стороны угла до другой.

Тупой Больше 90°, но меньше 180°
Развёрнутый Равен 180°

Развёрнутый угол равен сумме двух прямых углов, а прямой угол составляет половину развёрнутого угла.

Выпуклый Больше 180°, но меньше 360°
Полный Равен 360°

Два угла называются смежными , если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP - общая сторона, а две другие стороны - OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой , на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром .

Сумма смежных углов равна 180°.

Два угла называются вертикальными , если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 - вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому - ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем.