Преобразователь напряжения на ir2153. Импульсный блок питания на ir2153, ir2155

Итак первый блок питания, условно назовем его «высоковольтным»:

Схема классическая для моих импульсных блоков питания. Драйвер запитывается непосредственно от сети через резистор, что позволяет снизить рассеиваемую на этом резисторе мощность, по сравнению с запиткой от шины +310В. Этот блок питания имеет схему мягкого старта (ограничения пускового тока) на реле. Софт-старт питается через гасящий конденсатор С2 от сети 230В. Этот блок питания оснащен защитой от короткого замыкания и перегрузки во вторичных цепях. Датчиком тока в ней служит резистор R11, а ток при котором срабатывает защита регулируется подстроечным резистором R10. При срабатывании защиты загорается светодиод HL1. Этот блок питания может обеспечить выходное двухполярное напряжение до +/-70В (с данными диодами во вторичной цепи блока питания). Импульсный трансформатор блока питания имеет одну первичную обмотку из 50 витков и четыре одинаковые вторичные обмотки по 23 витка. Сечение провода и сердечник трансформатора выбираются исходя из требуемой мощности, которую необходимо получить от конкретного блока питания.

Второй блок питания, условно его будем называть «ИБП с самопитанием»:

Этот блок имеет похожую с предыдущим блоком питания схему, но принципиальное отличие от предыдущего блока питания заключается в том, что в этой схеме, драйвер запитывает сам себя от отдельной обмотки трансформатора через гасящий резистор. Остальные узлы схемы идентичны предыдущей представленной схеме. Выходная мощность и выходное напряжение данного блока ограничено не только параметрами трансформатора, и возможностями драйвера IR2153, но и возможностями диодов примененных во вторичной цепи блока питания. В моем случае — это КД213А. С данными диодами, выходное напряжение не может быть более 90В, а выходной ток не более 2-3А. Выходной ток может быть больше только в случае применении радиаторов для охлаждения диодов КД213А. Стоит дополнительно остановиться на дросселе Т2. Этот дроссель мотается на общем кольцевом сердечнике (допускается использовать и другие типы сердечников), проводом соответствующего выходному току сечения. Трансформатор, как и в предыдущем случае, рассчитывается на соответствующую мощность с помощью специализированных компьютерных программ.

Блок питания номер три, условно назовем «мощный на 460х транзисторах» или просто «мощный 460»:

Эта схема уже более значительно отличается от предыдущих схем представленных выше. Основных больших отличий два: защита от короткого замыкания и перегрузки здесь выполнена на токовом трансформаторе, второе отличие заключается в наличии дополнительных двух транзисторов перед ключами, которые позволяют изолировать высокую входную емкость мощных ключей (IRFP460), от выхода драйвера. Еще одно небольшое и не существенное отличие заключается в том, что ограничительный резистор схемы мягкого старта, расположен не в шине +310В, как это было в предыдущих схемах, а в первичной цепи 230В. В схеме так же присутствует снаббер, включенный параллельно первичной обмотке импульсного трансформатора для улучшения качества работы блока питания. Как и в предыдущих схемах чувствительность защиты регулируется подстроечным резистором (в данном случае R12), а о срабатывание защиты сигнализирует светодиод HL1. Токовые трансформатор мотается на любом небольшом сердечнике который у вас окажется под рукой, вторичные обмотки мотаются проводом небольшого диаметра 0,2-0,3 мм, две обмотки по 50 витков, а первична обмотка представляет собой один виток провода достаточного для вашей выходной мощности сечения.

И последний на сегодня импульсник — это «импульсный блок питания для лампочек», будем его условно так называть.

Да да, не удивляйтесь. Однажды появилась необходимость собрать гитарный предусилитель, но под рукой не оказалось необходимого трансформатора и тогда меня очень выручил данный импульсник, который был построен именно по тому случаю. Схема отличается от трех предыдущих своей максимальной простотой. Схема не имеет как таковой защиты от короткого замыкания в нагрузке, но необходимости в такой защите в данном случае нет, так как выходной ток по вторичной шине +260В ограничен резистором R6, а выходной ток по вторичной шине +5В — внутренней схемой защиты от перегрузки стабилизатора 7805. R1 ограничивает максимальный пусковой ток и помогает отсекать сетевые помехи.

Упрощенный мост на IR2153 — такое устройство как мост реализованный на универсальном драйвере для управления полевыми транзисторами, справедливо считается одним из наиболее эффективных модулей преобразователя. Но, чтобы собрать такой прибор потребуются существенные денежные вложения, а также нужно учитывать технологический уровень сложности при его изготовлении. Это если вы собираетесь взяться за конструирование высоко мощного моста на несколько киловатт, тогда да, будут некоторые затруднения.

А вот если воспользоваться приведенной ниже схемой, то никаких проблем не будет, тем более устройство собрано на двух популярных чипах IR2153 , представляющих собой высоковольтные драйвера с внутренним генератором. Принцип включения микросхем обычный и неоднократно тестировался на полумосте. Особенность вызывает первоочередное тактирование второй микросхемы от R-входа.

Номинальные значения электронных компонентов:

B1 — диодный мост RS2007, RS3507 и тому подобные. При эксплуатации на мощностях более пары сотен ватт необходимо поставить на него радиатор.
C1, C7 — электролиты 630…1000мкФ х 400В
R1, R5 — 33..56кОм 2Вт. Для более точного расчета можете воспользоваться формулой
R=310/(2*Cзатвора*15.6*fраб+0.003)
C2, C5 — электролиты 220мкФ 25В
C8, C9 — керамика 0.1мкФ 25В
R8 — 2Ом 0.25Вт
R9 — 24кОм
R10 — 6кОм
R2, C3 — рассчитываются по даташиту на IR2153 исходя из требуемой частоты
IC1, IC2 — IR2153, IR2153D, IR21531 (если применяется IR2153D то D1 и D2 не ставить!)
D1, D2, D3, D4 — UF4007, BYW26C, BY329 или другие подобные ультрабыстрые диоды
C4, C6 — танталовые 22мкФ 25В
R3, R4, R6, R7 — 10…30Ом 0.25Вт (меньшее значение для тяжелых затворов, большее — для легких)
Q1, Q2, Q3, Q4 — IRF840 или что-то подобное. Все зависит от ваших потребностей

Насчет расчетов например: R2,С3 как сказано выше, нужно определять по даташиту, к тому же есть множество программ для расчета. Если для кого то это дремучий лес то я считаю, тогда и не надо вообще браться за конструирование.

Ниже показана печатная плата с нанесенной на нее обозначениями деталей и их места установки.

В качестве нагрузки данного моста могут послужить выходной трансформатор строчной развертки телевизора, SSTC-катушка либо что-то аналогичное им, но мощность не должна превышать 1000 Вт. Если использовать большие мощности, то нет никакой гарантии в стабильной работе микросхемы. Если же все таки возникает необходимость реализовать высокие мощности, то тогда необходимо добавить емкость конденсаторов в цепи фильтров 310v, то тогда существует вероятность, что будет прекрасно работать и на высокой мощности.

Техническая информация

1. Когда осуществляется запуск, то создается сильный импульсный бросок тока в следствии происходящего цикла зарядки конденсаторов в цепи фильтра. При этом возможно срабатывание автоматов, если такое происходит, то нужно в сетевую цепь установить NTC-термистор, который применяется для защиты импульсных питающих источников и электронных балластных систем, предварительно подобрав его значения по необходимому току.
2. При подключении к мосту в качестве нагрузки выходной строчный трансформатор, то первичную обмотку нужно наматывать в количестве 65 витков не меньше.
3. При компоновке элементов на печатную плату, лучше всего под микросхемы нужно будет устанавливать панельки, а в них уже помещать саму микросхему после полного завершения монтажа схемы.

!
В данной статье мы вместе с Романом (автором YouTube канала «Open Frime TV») соберем универсальный блок питания на микросхеме IR2153. Это некий «франкенштейн», который содержит в себе лучшие качества из разных схем.

В интернете полно схем блоков питания на микросхеме IR2153. Каждая из них имеет некие положительные особенности, но вот универсальной схемы автор еще не встречал. Поэтому было принято решение создать такую схему и показать ее вам. Думаю, можно сразу к ней перейти. Итак, давайте разбираться.


Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом мы убиваем двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги. Автор специально сделал несколько отверстий в плате под разные размеры конденсаторов.








Если же блока нету в наличии, то цены на пару таких конденсаторов ниже чем на один высоковольтный. Емкость конденсаторов одинакова и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.




Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что экономит нам место. И это еще не все. Напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.




Следующая особенность схемы, это запитка для IR2153. Все кто строил блоки на ней сталкивались нереальным нагревом питающих резисторов.




Даже если их ставить от переменки, количество тепла выделяется очень много. Тут же применено гениальное решение, использование вместо резистора конденсатор, а это нам дает то, что нагрев элемента по питанию отсутствует.


Такое решение автор данной самоделки увидел у Юрия, автора YouTube канала "Red Shade". Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.






Но после тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое автор установил защиту. Если она не нужна, то можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.




Ток защиты регулируется с помощью вот этого подстроечного резистора:


Номиналы резисторов шунта изменяетюся в зависимости от максимальной выходной мощности. Чем больше мощность, тем меньше нужно сопротивление. Вот к примеру, для мощности ниже 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то нужны резисторы на 0,2 Ом, ну и при 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом.


Данный блок не стоит собирать мощностью выше 600 Вт, а также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц, это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.




Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.


Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.


Если же нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.




Также необходимо отметить и такие вспомогательные элементы как снабберы (Snubber) в обвязке трансформатора;


сглаживающие конденсаторы;


а также Y-конденсатор между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.


Про данные конденсаторы есть отличный ролик на Ютубе (ссылку автор прикрепил в описании под своим видеороликом (ссылка ИСТОЧНИК в конце статьи)).


Нельзя пропускать и частотозадающую часть схемы.


Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая - это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.




Сейчас вы можете видеть 2-е макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.


Макетки автор делал для того, чтобы со спокойной душой заказать изготовление данной платы в Китае. В описании под оригинальным видеороликом автора, вы найдете архив с данной платой, схемой и печаткой. Там будет в двух платках и первый, и второй варианты, так что можете скачивать и повторять данный проект.

После заказа автор с нетерпением ждал платы, и вот они уже приехали. Раскрываем посылку, платы достаточно хорошо упакованы - не придерешься. Визуально осматриваем их, вроде все отлично, и сразу же приступаем к запайке платы.








И вот она уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне. Автор применил вот такие круглые, потому что их размеры весьма скромные.




Далее видим конденсаторы фильтра.


Их можно достать из старого блока питания компьютера. Дроссель автор мотал на кольце т-9052, 10 витков проводом 0,8 мм 2 жилы, но можно применить дроссель из того же компьютерного блока питания.
Диодный мост – любой, с током не меньше 10 А.


Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой по низкой.

Автомобильный инвертор на IR2153

Задача проста: есть планшет с программами навигации и навигатор с аналогичными функциями. Задача: заряжать их при помощи родных зарядных устройств.

Почему так? Данные девайсы - особо жрущие электрическую энергию. И требуют они её настолько много, что обычные дешёвые китайские автомобильные зарядки не выдерживают и либо не работают, либо сгорают. Но китайцы же об этом не предупреждают. И даже в наших магазинах об этом не скажут, так как своим товаром продавцы не пользуются.

В силу этих причин были созданы простые требования к автомобильному инвертору: он должен питать штатные зарядные устройства электроники. Вот и всё.

Какие же сложности тут могут быть? Их немного. Прежде всего, следует определиться, что мы будем делать прямоходовый преобразователь. А это значительно упрощает многое.


Чтобы не ставить после трансформатора диодный мост из быстрых высоковольтных диодов, преобразователь сделаем однотактным, для чего используем только один выход микросхемы IR2153. Скважность при этом будет 50%. Так как инвертор по входу потребляет приличный ток, поставим два ключевых транзистора параллельно, чтобы распределить нагрев. Первичных обмотки сделаем тоже две, чтобы не искать толстый провод. Такой подход - не очень правильный и мы не рекомендуем его повторять. По уму, к тому же, в истоки транзисторов при параллельном включении следует поставить выравнивающие резисторы.


Данный инвертор не имеет стабилизации и выходное напряжение под нагрузкой будет слегка просаживаться. Почему же мы выбрали вариант с такой упрощённой схемотехникой?

Все современные зарядки для электроники - импульсные. На входе они имеют диодный мост и электролитический конденсатор. Таким образом, они могут работать и от постоянного тока. В некоторых зарядках диодный мост набран из быстрых диодов, и они могут работать от пульсирующего тока (некоторые китайские инверторы не имеют электролитического конденсатора на выходе). А если зарядки такие "всеядные", то в инверторе для них не нужна стабилизация, что позволяет отказаться от крупного дросселя и сделать схему очень простой для повторения.

Тем не менее, в целях эксперимента мы сделали несколько отводов от вторичной обмотки трансформатора на разные напряжения - от 220 до 310 вольт. Нужный отвод выбирается джампером. Это нужно для тех, кто не до конца верит, что при выпрямлении сетевого напряжения 220 вольт получаются 310 вольт постоянки и боится питать зарядки от 310 вольт. На самом деле, зарядкам всё равно, они работают в очень широком диапазоне питающих напряжений. При тестировании абсолютно все зарядки заработали от всех напряжений, выдаваемых инвертором.

Максимальная мощность, выдаваемая инвертором, будет зависеть от применяемого трансформатора. Под его феррит следует подобрать частоту IR2153, задаваемую цепочкой C1R1. Полевые транзисторы - низковольтные, их следует выбирать по току. Диод на выходе - быстрый высоковольтный. При тестировании удалось успешно запитать лампочку на 60Вт.


Данная конструкция была собрана по результатам проведённого недавно

Но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

В общем начнем пока с так называемого «высоковольтного» блока питания:

Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

Теперь рассмотрим следующий блок питания:

Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.