Производственное освещение, его количественные и качественные характеристики. требования к производственному освещению

Посредством зрения люди воспринимают до 90 % необходимой для работы информации. Свет необходим для нормальной жизнедеятельности человека, сохранения его здоровья и поддержания высокой работоспособности. Рациональное освещение — одно из основных средств профилактики травматизма. Проведенные в США в 60-х годах XX в. исследования показали, что из-за недостаточной освещенности происходило около 20 % всех несчастных случаев, повлекших за собой экономические потери в размере = 2 млрд долларов в год.

Состояние функции зрения определяется следующими свойствами глаза: остротой зрения — способностью глаза различать мелкие предметы; скоростью зрительного восприятия — временем, в течение которого глаз успевает рассмотреть предметы; временем ясного устойчивого видения, характеризующимся периодом, за который рассматриваемый предмет не утрачивает четкости контуров; контрастной чувствительностью — способностью глаза различать яркости различной интенсивности; зрительной адаптацией — приспособлением глаза к изменяющимся условиям освещенности; аккомодацией — способностью глаза видеть предметы, находящиеся на различном расстоянии от него.

Производственное освещение характеризуется количественными и качественными показателями. К количественным относятся световой поток Ф, сила света I, освещенность Е, яркость поверхности Я и коэффициент отражения ρ. Качественные показатели характеризуют условия зрительной работы. Это такие понятия, как фон, величина контраста объекта с фоном К, видимость V, показатель ослепленности Р и др.

Световой поток Ф—это лучистая энергия, вызывающая световое ощущение. Единица измерения — люмен [лм]. Люмен представляет собой световой поток от эталонного точечного источника в 1 международную свечу, помещенного в вершине телесного угла в 1 стерадиан [ср].

Световой поток принято оценивать в пространстве и на поверхности. В первом случае характеристикой служит сила света I — пространственная плотность светового потока: I= dФ/dw (здесь dw — телесный угол, в пределах которого распространяется световой поток, ср); во втором — освещенность Е= dФ/dS (здесь dS— площадь поверхности, на которую падает световой поток, м2). Единица измерения силы света — кандела [кд] (лат. candela — свеча): 1 кд = 1 лм/ср. Единица измерения освещенности — люкс [лк]: 1 лк = 1 лм/м2.

Яркость Я— это часть пространственной плотности светового потока, исходящая от светящейся или освещаемой поверхности в сторону глаза. Она зависит от силы света, угла падения светового потока на плоскость, цвета предмета и др. Чрезмерная яркость называется блесткостью. Единица измерения яркости — нит: 1 Нт = 1 кд/м2.

Коэффициент отражения р характеризует способность поверхности отражать падающий на нее световой поток: ρ = Фoтр/Фпод. Поверхность, на которой рассматривают объект, называют фоном. При ρ > 0,4 фон считают светлым, при 0,2 ≤ ρ ≤ 0,4 — средним, при ρ < 0,2 — темным.

Контраст объекта с фоном характеризуется отношением яркостей рассматриваемого объекта и фона: К = (Яф — Яo)/Яф (здесь Яф и Яo — соответственно яркость фона и объекта). При К> 0,5 контраст объекта с фоном считают большим, при 0,2...0,5 — средним и при К< 0,2 — малым.

Видимость — это способность глаза воспринимать объект в зависимости от его освещенности, размера, яркости, контраста объекта с фоном и длительности экспозиции: V— К/Кпор (здесь К— контраст объекта с фоном; Kпор — пороговый контраст, т.е. наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличимым).

Показатель ослепленности:

Р = 1000 (kо-1)

где ko = V1/V2 — коэффициент ослепленности; V1, V2 — видимость объекта наблюдения соответственно при экранировании и при наличии блестких источников в поле зрения.

Коэффициент пульсации освещенности kn (%) служит критерием оценки колебаний освещенности при изменении во времени светового потока ламп.

Наибольшие изменения освещенности наблюдаются при использовании газоразрядных ламп. В этом случае в зависимости от марки ламп, особенностей подключения светильников к электрической сети и типа пускорегулирующей аппаратуры kn изменяется от 5 до 65 %. У ламп накаливания вследствие особенностей их конструкции наилучшие значения kn = 1...7 %. Чувствительность глаза неодинакова к различным цветам. Наибольшая восприимчивость наблюдается по отношению к желтому и желто-зеленому цветам, наименьшая — к красному и фиолетовому.

Световой поток
Характеризует мощность видимого излучения по её воздействию на глаз человека в специальных единицах - люменах [Лм]. Световой поток является важнейшей характеристикой ламп. Обычная лампа накаливания мощностью 100 Вт имеет световой поток 1300 Лм, а металлогалогенная лампа мощностью 70 Вт - 6000 Лм.

Освещённость
Это поверхностная плотность светового потока, падающего на площадку заданной величины. Единица освещённости - люкс [Лк]. Одна из самых главных величин в нормах освещения. Чаще всего нормируется горизонтальная освещённость (в горизонтальной плоскости). Диапазон уровней освещённости составляет при искусственном освещении от 1 до 20 Лк на улице и от 20 до 5000 Лк в помещении. В природных условиях освещённость E=0,2 Лк в полнолуние, 5000 - 10000 Лк днём при сплошной облачности и до 100000 Лк в ясный солнечный день.

Сила света
Это пространственная плотность светового потока, ограниченная телесным углом. Единица измерения силы света - кандела [кд] - воспроизводится эталоном и входит в Международную систему основных единиц (СИ).
Распределение силы света в пространстве (кривая силы света, КСС) - одна из важнейших характеристик осветительных приборов, необходимых для расчёта освещения. КСС светильников обычно приводится в полярных координатах для условной лампы со световым потоком 1000 лм, т.е. в кд/кЛм.

Яркость
Для матовых (диффузных или равноярких) поверхностей эта величина пропорциональна поверхностной плотности отраженного или излучаемого этой поверхностью светового потока. В более общем виде она равна отношению силы света в направлении точки наблюдения к видимой из этой точки площади светящей поверхности (проекции). Единица яркости - кд/м2. Яркость непосредственно связана с уровнем зрительного ощущения, а распределение яркости в поле зрения (например, в интерьере) характеризует качество освещения. В полной темноте человек реагирует на яркость в одну миллионную долю кд/м2. Сплошной светящий потолок при яркости более 500 кд/м2 оказывает дискомфортное влияние. Яркость солнца - около 1 000 000 000 кд/м2, а люминесцентной лампы - 5-11 тысяч кд/м2.

Коэффициенты отражения [ρ] и пропускания [τ]
Определяются как отношение отраженного [ρ] или пропущенного [τ] материалом светового потока к упавшему световому потоку. Коэффициенты отражения некоторых отделочных материалов:
- белая краска (0,7 - 0,8)
- светлые обои (0,5 - 0,7)
- белый мрамор - 0,45
- красный кирпич - 0,3
- темное дерево (0,1 - 0,25)
- асфальт - 0,07

При светлой отделке помещений (особенно при малых по отношению к высоте размерах) очень заметно возрастают уровни освещенности. Коэффициент отражения фона, на котором рассматривается объект, входит в число показателей, характеризующих условия зрительной работы на рабочем месте. По нормам России фон считается светлым при коэффициенте отражения более 0,4, средним - от 0,2 до 0,4 и тёмным - менее 0,2. При увеличении коэффициента отражения фона - видимость объекта улучшается.

Световая отдача
Это главная характеристика энергоэкономичности ламп и она равна отношению светового потока лампы к её мощности. Применение ламп с высокой световой отдачей - основной путь экономии электроэнергии в осветительных установках. Например, путём замены ламп накаливания, световая отдача которых 7-22 лм/Вт, компактными люминесцентными лампами (50-90 лм/Вт) можно снизить расход электроэнергии в среднем в 5-6 раз, не уменьшая уровня освещённости.

Показатели ослеплённости и дискомфорта
Эти показатели характеризуют прямое слепящее действие источников света или светильников. По показателю ослеплённости можно судить о степени ухудшения видимости при действии блёских источников света. Например, при значении этого показателя, равном 100, видимость снижается на 10%. По российским нормам для точных производственных работ значение показателя ослеплённости должно быть не выше 20. Показатель дискомфорта (М) характеризует степень неудобства или напряженности при наличии в поле зрения источников повышенной яркости.

Цилиндрическая освещенность [Ец]
Характеризует насыщенность помещения светом и определяется (в люксах) как средняя вертикальная освещенность, создаваемая в заданной точке наблюдения. В России эта величина нормируется в таких помещениях как холлы, парадные вестибюли, зрительные, выставочные, читальные и торговые залы, залы заседания и приёмов и т.п. Повышенная насыщенность светом создаётся при уровнях Ец не менее 100 лк.

Цвет и цветность
Понятие цвета определяется, как свойство видимого излучения вызывать зрительное ощущение цветности (цветовой тон + насыщенность) и яркости предметов. Цветовой тон (красный, оранжевый и т.д.) характеризуется длиной волны видимого излучения, а насыщенность - чистотой цвета, связанной со степенью приближения к спектрально чистому цвету от точки белого. Например, малонасыщенные цветовые тона получают путём большого разбавления красителя белой краской. Цвет одного и того же предмета может сильно изменяться в зависимости от спектрального состава освещения.

Цветовая температура [Тц]
Очень важная характеристика источников света, определяющая цветность ламп и цветовую тональность (тёплую, нейтральную или холодную) освещаемого этими лампами пространства. Она примерно равна температуре нагретого тела одинакового по цвету с заданным источником света. Выражается в температурной шкале Кельвина: Т = (градусы Цельсия +273) К.
Значения Тц некоторых источников:
- пламя свечи - 1900 К;
- лампы накаливания - 2500-3000 К;
- люминесцентные лампы - 2700-6500 К;
- Солнце - 5000-6000 К;
- облачное небо - 6000-7000 К;
- ясное небо - 10000-20000 К;

Индекс цветопередачи
Одна из основных цветовых характеристик качества разрядных ламп. Характеризует степень воспроизведения цветов различных материалов при их освещении лампой при сравнении с эталонным источником света. Наивысшее значение Ra=100. Наихудшие по цветопередаче натриевые лампы высокого давления имеют Ra=25. Согласно нормам Германии очень хорошая цветопередача (степень 1) соответствует значениям Ra=80 и более, хорошая (степень 2) - от 60 до 79, удовлетворительная (степень 3) - от 40 до 59 и недостаточная (степень 4) - от 20 до 39.

Коэффициент пульсации освещенности [Кп]
Характеризует относительную глубину пульсации освещенности (в %) в заданной точке помещения при питании ламп от сети переменного тока. Неконтролируемая пульсация освещенности приводит к повышенной опасности травматизма при работе с движущимися и, в особенности, с вращающимися объектами, а также к зрительному утомлению. В нормах России для большинства зрительных работ установлено значение Кп не более 20.

Освещение характеризуется количественными и качественными показателями . Количественными являются световой поток, сила света, освещенность, светимость, коэффициент отражения поверхности, яркость, световая отдача источника света, коэффициент естественной освещенности.

Световой поток Ф – это энергия световых электромагнитных волн, переносимая в единицу времени через некоторую площадь поверхности и оцениваемая по зрительному ощущению. Единицей измерения светового потока является люмен (лм).

Сила света I – пространственная плотность светового потока, численно равная световому потоку, излучаемому точечным источником света в телесный единичный угол w (стер):

следовательно, полный световой поток, испускаемый точечным источником силой света I, равен:

Единица силы света I – кандела (кд).

Освещенность Е, лк, – поверхностная плотность светового потока, которая характеризуется световым потоком, приходящимся на единицу площади освещаемой поверхности S, м 2:

Освещенность, лк, создаваемая точечным источником, на расстоянии r от него равна:

(4)

где a – угол между падающим лучом и нормалью к поверхности в точке падения луча.

Источник света, линейные размеры которого незначительно отличаются от расстояния до него из точки наблюдения, не является точечным. Для его характеристики используют величину светимости и яркости.

Светимость R, лк, определяется величиной светового потока, испускаемого с единицы площади светящейся поверхности S пов:

Если светимость тела обусловлена его освещенностью, то R = r×Е, где r – коэффициент отражения.

Коэффициент отражения поверхности r характеризует способность поверхности отражать падающий на нее световой поток:

где Ф отр и Ф пад – соответственно отраженный и падающий на поверхность световой поток, лм.

При r > 0,4 поверхность светлая; при r = 0,4…0,2 поверхность средняя; если r < 0,2, то поверхность темная.

Яркость В, кд/м 2 , характеризует излучение площади проекции светящейся поверхности S пов в данном направлении a:

(7)

где I a – сила света светящейся поверхности в направлении a, кд;

a – угол между нормалью к элементу поверхности и направлением наблюдателя, градус.

Максимальное значение яркости устанавливается СНиП 23-05-95 «Естественное и искусственное освещение» в зависимости от площади освещаемой рабочей поверхности. Если площадь рабочей поверхности S меньше 10 -4 м2 допустимо значение В max = 2000 кд/м 2 , если S > 1×10 -1 , то В max = 500 кд/м 2 .

Световая отдача источника света y, лм/Вт, определяется отношением светового потока Ф, лм, источника к его мощности Р, Вт:

Характеристикой естественной освещенности является коэффициент естественной освещенности е в процентах: отношение освещенности Е вн в данной точке помещения к одновременной наружной горизонтальной освещенности Е нар, создаваемой светом всего небосвода:

(9)

К качественным показателям освещения относят: спектральный состав света, фон, контраст объекта с фоном, видимость объекта, коэффициент пульсации освещенности, показатель ослепленности. Последние два показателя нормируются с учетом характеристики зрительной работы по СНиП 23-05-95.

Контраст объекта с фоном К характеризуется соотношением яркости рассматриваемого объекта и фона:

(10)

где В о и В Ф – соответственно яркость объекта и фона, кд/м 2 .

Если объект различения сильно выделяется на фоне, то контраст большой (К > 0,5); если различие яркостей заметно (К = 0,2…0,5), то контраст средний; при малом отличии по яркости (К < 0,2) контраст малый.

Видимость объекта V характеризует способность глаза воспринимать объект. Она зависит от освещенности, яркости, размера объекта и определяется числом пороговых контрастов в контрасте объекта с фоном:

где К пор – наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличимым на фоне.

Коэффициент пульсации освещения К п , в процентах– критерий оценки относительной величины колебаний освещенности в результате изменения во времени светового потока источников света при питании их переменным током:

, (12)

где Е max и Е min – максимальная и минимальная освещенность за период ее колебания, лк;

Е ср – средняя освещенность за тот же период, лк.

Коэффициент пульсации для I…III разрядов зрительных работ не должен превышать 10 %.

Показатель ослепленности Р – критерий оценки слепящего действия осветительной установки:

, (13)

где W – коэффициент ослепленности, равный отношению видимости при экранировании источников V э к видимости при наличии ярких источников в поле зрения V.

Одной из светотехнических характеристик светильников является коэффициент полезного действия светильника h св , характеризующий потерю части светового потока в отражателе (рассеивателе):

(14)

где Ф св – световой поток, вышедший из светильника, лм;

Ф л – световой поток лампы, лм.

Если в светильнике несколько ламп, то световой поток Ф л определяется как сумма потока всех ламп, установленных в светильнике.

Примеры решения задач

Пример 1.1. Определить световой поток, лм, падающий на поверхность площадью S = 0,2 м 2 , расположенную на расстоянии
r = 2 м от источника, сила света которого I = 400 кд.

Примем, что источник света находится в центре сферы радиусом
2 м. Освещаемая поверхность S составляет часть площади поверхности сферы, угол падения a = 0.

Из выражений (3) и (4) найдем I/r 2 = Ф/S, откуда:

Ответ: световой поток Ф = 20 лм.

Пример 1.2. Лампа накаливания, сила света которой I = 200 кд находится в матовом сферическом светильнике диаметром D = 0,2 м.

Найти светимость лампы, пренебрегая поглощением света светильником.

Полный телесный угол w = 4p, площадь светящейся поверхности S = pD 2 . Тогда из выражений (5) и (2) светимость, лк, определяется по формуле:

Пример 1.3. Над круглым столом диаметром D = 1,6 м на высоте h = 0,6 м висит лампа, равномерно излучающая свет по всем направлениям. Световой поток, падающий на стол, составляет
Ф = 200 лм. Нормируемая освещенность на рабочем месте
Е Н = 200 лк. Определить силу света лампы, ее полный световой поток, соответствие освещенности нормам в центре и на крае стола.

Телесный угол, под которым из источника видна поверхность стола (рис. 1), равен:

,

где a – угол падения луча.


h

Рис. 1. Схема к примеру 3

Из рисунка 1 следует:

Из формулы (1) сила света I, кд, равна:

Полный световой поток, лм, испускаемый точечным источником света по формуле (2) составляет:

Освещенность центра стола Е ц, лк, определяем по формуле (4):

.

Освещенность края стола Е кр, лк, рассчитываем по формуле (4):

.

Следовательно, освещенность центра стола соответствует требованиям норм (Е Н = 200 лк). Выполнять работы данной степени точности на крае стола недопустимо.

Пример 1.4. В центре квадратной комнаты площадью 25 м 2 висит лампа. Считая ее точечным источником, найти, на какой высоте от пола должна находиться лампа, чтобы освещенность в углах комнаты была наибольшей.

Расстояние от лампы до угла комнаты r, величина а (половина диагонали квадратного пола комнаты), сторона квадратного пола b и высота лампы над полом hсвязаны равенством:

Тогда с учетом формулы (4) выражение для освещенности может быть записано так:

Для нахождения максимума Е возьмем производную dE/da и приравняем ее к нулю:

отсюда tg 2 a = 2. Тогда искомая высота h, м, будет равна:

.

Задачи для самостоятельного решения

Задача 1.1. Лампа накаливания силой света I = 100 кд висит над центром круглого стола диаметром 2 м. Считая лампу точечным источником света, вычислить изменение освещенности края стола при постепенном подъеме лампы на высоту h от 0,5 до 1,0 м через каждые 0,1 м. Построить график зависимости Е = f (h).

Задача 1.2. На высоте 0,4 м от поверхности круглого стола диаметром 1,2 м в светильнике местного освещения установлена лампа накаливания. Над центром стола на высоте 2 м от его поверхности висит люстра с четырьмя такими же лампами. В каком случае освещенность на краю стола будет больше и во сколько раз: при местном или общем освещении?

Задача 1.3. Найти освещенность поверхности Земли, создаваемую нормально падающими солнечными лучами. Яркость Солнца равна 1,2×10 9 кд/м 2 .

Задача 1.4. Определить светимость и яркость лампы накаливания с матовой сферической колбой диаметром 0,05 м и 0,1 м. Сила света, создаваемая лампой равна 100 кд. Потерей света в колбе пренебречь.

Задача 1.5. На лист белой бумаги размером 0,2х0,3 м нормально к поверхности падает световой поток 120 лм. Найти освещенность, светимость и яркость бумажного листа, если его коэффициент отражения r = 0,75. Какова должна быть освещенность листа, чтобы его яркость не превышала допустимого значения 2000 кд/м 2 ?

Задача 1.6. Лист бумаги размером 0,1х0,3 м освещается лампой с силой света 100 кд. КПД светильника составляет 50 %. Определить освещенность листа бумаги.

Задача 1.7. Электрическая лампа силой света 100 кд излучает во все стороны ежеминутно 122 Дж световой энергии. Найти световую отдачу, если потребляемая мощность лампы 100 Вт.

Задача 1.8. На высоте h 1 = 2 м над серединой круглого стола диаметром D = 3 м висит лампа силой света I 1 = 100 кд. Ее заменили лампой силой света I 2 = 25 кд, изменив расстояние от стола так, что освещенность середины стола не изменилось. Как изменится освещенность края стола?

Задача 1.9. Три одинаковых точечных источника света расположены в вершинах равностороннего треугольника. В центре треугольника перпендикулярно к его плоскости и параллельно одной из сторон находится маленькая пластинка. Определить освещенность обеих сторон пластинки, если сила света каждого из источников
I = 10 кд, а длина стороны треугольника l = 1м.

Задача 1.10. На какой высоте над чертежной доской следует повесить лампу мощностью Р = 200 Вт, чтобы получить освещенность доски под лампой Е = 50 лк? Световая отдача лампы равна
y = 12 лм/Вт. Наклон доски a = 30 0 .

Задача 1.11. Световой поток лампы мощностью Р л = 200 Вт при напряжении U = 120 В равен Ф л = 3050 лм. Определить световой поток светильника, если коэффициент полезного действия его
h св = 78 %.

ЗАДАЧА 1.12. Определить световую отдачу лампы накаливания мощностью Р л = 60 Вт, напряжением U = 127 В, если ее световой поток Ф л = 6000 лм.

Свет имеет сложную корпускулярно-волновую природу и представляет собой часть оптической области спектра. К видимому излучению оптического спектра относят излучение с длиной волны от 0,38 до 0,78 мкм. В этом диапазоне волны (монохроматический свет) вызывают цветовое ощущение. Для гигиенической оценки освещения используются следующие показатели :

Световой поток Ф – часть лучистого потока, воспринимаемая человеком как свет, характеризует мощность светового излучения, измеряется в люменах (лм).

Один люмен – это световой поток, излучаемый точечным источником с силой света 1 кандела (кд) в телесном угле в 1 стерадиан (ср).

Сила света J – пространственная плотность светового потока, определяется как отношение светового потока DФ(лм), исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла DW (стерадиан), к величине этого угла, измеряется в канделах (кд):

Телесный угол - часть пространства, заключенная внутри конической поверхности. Измеряется отношением площади, вырезаемой им из сферы произвольного радиуса, к квадрату последнего .

Освещенность Е – поверхностная плотность светового потока, определяется как отношение светового потока DФ(лм), равномерно падающего на освещаемую поверхность, к ее площади DS (м 2), измеряется в люксах (лк):

Один лк – это освещенность 1 м 2 поверхности при падении на нее светового потока в 1 лм.

Яркость L поверхности под углом a к нормали – отношение силы света DJ а (кд), излучаемой освещаемой или светящейся поверхностью в этом направлении, к площади DS (м 2) проекции этой поверхности, на плоскость перпендикулярную к этому направлению, измеряется в кд/м 2:

, (3.3)

где a угол между направлениями силы света и вертикалью.

Одна кд/м 2 – это яркость равномерно светящейся плоской поверхности, излучающей в перпендикулярном направлении с площади S = 1 м 2 силу света в 1 кд.

Яркость является величиной, непосредственно воспринимаемой глазом. При постоянстве освещенности яркость предмета тем больше, чем больше его отражательная способность.



Коэффициент естественной освещенности (КЕО) отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба (непосредственным или после отражений), к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода; выражается в процентах :

, (3.4)

где Е В – освещенность в точке внутри помещения, создаваемая светом видимого через световой проем участка небосвода, лк; Е н – освещенность в тот же момент времени вне производственного помещения, создаваемая равномерно рассеянным светом всего небосвода, лк.

Объект различения – наименьший элемент рассматриваемого предмета или дефект, которые необходимо различить в процессе работы (например, линия, знак, нить, пятно, риска, трещина, символ и т. п.).

Фон – поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Характеризуется коэффициентом отражения, зависящим от цвета и фактуры поверхности.

Коэффициент отражения r определяется как отношение отраженного от поверхности светового потока Ф отр к падающему на нее световому потоку Ф пад:

(3.5)

Значения коэффициента отражения находятся в пределах 0,02…0,95. r > 0,4 – фон считается светлым; r = 0,2…0,4 – средним; r < 0,2 – темным.

Контраст объекта с фоном k – степень различия объекта и фона
характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, риски или др. элементов) и фона:

(3.6)

k > 0,5 считается большим (объект резко выделяется на фоне);

k = 0,2…0,5 – средним (объект и фон заметно отличаются по яркости);

k < 0,2 – малым (объект слабо заметен на фоне).

Коэффициент пульсации освещенности k E – критерий глубины колебаний освещенности в результате изменения во времени светового потока используемых источников света:

где Е max , Е min и Е ср – максимальное, минимальное и среднее значения освещенности за период колебаний. k E = 15 65 % для газоразрядных ламп;
k E = 7 % для обычных ламп накаливания; k E = 1 % для галогенных ламп.

Пульсации освещенности возникают из-за питания источников света переменным напряжением. Особо большие значения они имеют при использовании малоинерционных источников света, которыми являются люминесцентные лампы. Пульсации освещенности на рабочей поверхности не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта.

Малое значение коэффициента пульсации для ламп накаливания объясняется большой тепловой инерцией нити накала, препятствующей заметному уменьшению светового потока лампы накаливания Ф лн в момент перехода мгновенного значения переменного напряжения сети через 0
(рисунок 3.1).

В то же время газоразрядные лампы (в т. ч. люминесцентные) обладают малой инерцией и меняют свой световой поток Ф лл почти пропорционально амплитуде напряжения питающей цепи. Нормативные значения k E для газоразрядных ламп представлены в таблице 3.1.

U сети

Рис. 3.1. Пульсации светового потока при однофазном и трехфазном

питающем напряжении

Для уменьшения коэффициента пульсации освещенности люминесцентные лампы включаются в разные фазы трехфазной электрической цепи. На правой нижней кривой рисунка 3.1 показан характер изменения во времени суммарного светового потока, создаваемого тремя люминесцентными лампами 3Ф лл, включенными в первом случае в одну фазу (фазу А сети), а затем в разные фазы трехфазной сети .

В последнем случае за счет сдвига фаз в трехфазной цепи на 1/3 периода «провалы» в световом потоке каждой из ламп компенсируются световыми потоками двух других ламп, в результате пульсации суммарного светового потока существенно меньше.

Стробоскопический эффект – кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте f всп = f вращ, медленно вращающимся в обратную сторону при f всп > f вращ, медленно вращающимся в ту же сторону при f всп < f вращ, где f всп и f вращ – соответственно частоты вспышки и вращения диска. Пульсации освещенности вращающихся объектов могут вызывать видимость их неподвижности и быть причиной травматизма .

Таблица 3.1.

Нормативные значения k E для газоразрядных ламп

Показатель ослепленности Р – критерий оценки слепящего действия, определяемый по формуле:

, (3.8)

где S – коэффициент ослепленности; ; ∆В пор – пороговая разность яркости объекта и фона при обнаружении объекта на фоне равномерной яркости, кд/м 2 ; (∆В пор) s – пороговая разность яркости объекта и фона при наличии в поле зрения блеского (яркого) источника света, кд/м 2 .

Свет имеет сложную корпускулярно-волновую природу и представляет собой часть оптической области спектра. К видимому излучению оптического спектра относят излучение с длиной волны от 0,38 до 0,78 мкм. В этом диапазоне волны (монохроматический свет) вызывают цветовое ощущение. Для гигиенической оценки освещения используются следующие показатели :

Световой поток Ф – часть лучистого потока, воспринимаемая человеком как свет, характеризует мощность светового излучения, измеряется в люменах (лм).

Один люмен – это световой поток, излучаемый точечным источником с силой света 1 кандела (кд) в телесном угле в 1 стерадиан (ср).

Сила света J – пространственная плотность светового потока, определяется как отношение светового потока DФ(лм), исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла DW (стерадиан), к величине этого угла, измеряется в канделах (кд):

Телесный угол - часть пространства, заключенная внутри конической поверхности. Измеряется отношением площади, вырезаемой им из сферы произвольного радиуса, к квадрату последнего .

Освещенность Е – поверхностная плотность светового потока, определяется как отношение светового потока DФ(лм), равномерно падающего на освещаемую поверхность, к ее площади DS (м 2), измеряется в люксах (лк):

Один лк – это освещенность 1 м 2 поверхности при падении на нее светового потока в 1 лм.

Яркость L поверхности под углом a к нормали – отношение силы света DJ а (кд), излучаемой освещаемой или светящейся поверхностью в этом направлении, к площади DS (м 2) проекции этой поверхности, на плоскость перпендикулярную к этому направлению, измеряется в кд/м 2:

где a угол между направлениями силы света и вертикалью.

Одна кд/м 2 – это яркость равномерно светящейся плоской поверхности, излучающей в перпендикулярном направлении с площади S = 1 м 2 силу света в 1 кд.

Яркость является величиной, непосредственно воспринимаемой глазом. При постоянстве освещенности яркость предмета тем больше, чем больше его отражательная способность.

Коэффициент естественной освещенности (КЕО) отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба (непосредственным или после отражений), к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода; выражается в процентах :

где Е В – освещенность в точке внутри помещения, создаваемая светом видимого через световой проем участка небосвода, лк; Е н – освещенность в тот же момент времени вне производственного помещения, создаваемая равномерно рассеянным светом всего небосвода, лк.


Объект различения – наименьший элемент рассматриваемого предмета или дефект, которые необходимо различить в процессе работы (например, линия, знак, нить, пятно, риска, трещина, символ и т. п.).

Фон – поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Характеризуется коэффициентом отражения, зависящим от цвета и фактуры поверхности.

Коэффициент отражения r определяется как отношение отраженного от поверхности светового потока Ф отр к падающему на нее световому потоку Ф пад:

Значения коэффициента отражения находятся в пределах 0,02…0,95. r > 0,4 – фон считается светлым; r = 0,2…0,4 – средним; r < 0,2 – темным.

Контраст объекта с фоном k – степень различия объекта и фона
характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, риски или др. элементов) и фона:

k > 0,5 считается большим (объект резко выделяется на фоне);

k = 0,2…0,5 – средним (объект и фон заметно отличаются по яркости);

k < 0,2 – малым (объект слабо заметен на фоне).

Коэффициент пульсации освещенности k E – критерий глубины колебаний освещенности в результате изменения во времени светового потока используемых источников света:

где Е max , Е min и Е ср – максимальное, минимальное и среднее значения освещенности за период колебаний. k E = 15 65 % для газоразрядных ламп;
k E = 7 % для обычных ламп накаливания; k E = 1 % для галогенных ламп.

Пульсации освещенности возникают из-за питания источников света переменным напряжением. Особо большие значения они имеют при использовании малоинерционных источников света, которыми являются люминесцентные лампы. Пульсации освещенности на рабочей поверхности не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта.

Малое значение коэффициента пульсации для ламп накаливания объясняется большой тепловой инерцией нити накала, препятствующей заметному уменьшению светового потока лампы накаливания Ф лн в момент перехода мгновенного значения переменного напряжения сети через 0
(рисунок 3.1).

В то же время газоразрядные лампы (в т. ч. люминесцентные) обладают малой инерцией и меняют свой световой поток Ф лл почти пропорционально амплитуде напряжения питающей цепи. Нормативные значения k E для газоразрядных ламп представлены в таблице 3.1.

Для уменьшения коэффициента пульсации освещенности люминесцентные лампы включаются в разные фазы трехфазной электрической цепи. На правой нижней кривой рисунка 3.1 показан характер изменения во времени суммарного светового потока, создаваемого тремя люминесцентными лампами 3Ф лл, включенными в первом случае в одну фазу (фазу А сети), а затем в разные фазы трехфазной сети .