Что такое диодное освещение: характеристики светодиодов и области их применения. Характеристики светодиодов для фонариков

Отправим материал вам на e-mail

Основные характеристики светодиодов SMD 5730

Современные изделия с геометрическими параметрами 5,7×3 мм. Благодаря своим стабильным характеристикам светодиоды SMD 5730 относятся к категории сверхъярких изделий. Для их изготовления используются новые материалы, благодаря чему они имеют повышенную мощность и высокоэффективный световой поток. SMD 5730 допускают эксплуатацию работать в условиях повышенной влажности. Они не боятся вибрации и температурных колебаний. Отличаются продолжительным сроком службы. Имеют угол рассеивания 120 градусов. После 3000 часов работы степень не превышает 1%.

Производители предлагают приборы двух видов: с мощностью 0,5 и 1 Вт. Первые маркируются SMD 5730-0,5, вторые – SMD 5730-1. Прибор может функционировать на импульсном токе. Для SMD 5730-0,5 номинальный ток равен 0,15 А, а при переходе на импульсный режим работы может достигать 0,18 А. Способен сформировать световой поток до 45 Лм.

Для SMD 5730-1 номинальный ток равен 0,35А, импульсный может достигать 0,8А при эффективности светоотдачи 110 Лм. Благодаря использованию в процессе производства термостойкого полимер, корпус прибора не боится воздействия достаточно высоких температур (до 250°С).

Cree: актуальные характеристики

Продукция американского производителя представлена в широком ассортименте. Серия Xlamp включает однокристальные и многокристальные изделия. Для первых характерно распределение излучения по краям прибора. Такое инновационное решение позволило наладить выпуск светильников с большим углом свечения при минимальном количестве кристаллов.

Серия XQ-E High Intensity является новейшей разработкой компании. Изделия обладают углом свечения 100-145 градусов. При сравнительно небольших геометрических параметрах 1,6 на 1,6 мм такие светодиоды имеют мощность 3 В при световом потоке 330 Лм. Характеристики светодиодов Cree на базе одного кристалла позволяют обеспечить качественную цветопередачу CRE 70-90.

Многокристальные LED-приборы имеют новейший тип питания 6-72 В. Их принято делить три группы в зависимости от мощности. Изделия до 4 Вт имеют 6 кристаллов и выпускаются в корпусах типа MX и ML. Характеристики светодиода XHP35 соответствуют мощность 13 Вт. Имеют угол рассеивания 120 градусов. Могут быть теплого или холодного белого цвета.

Проверка светодиода с помощью мультиметра

Иногда возникает необходимость в проверке работоспособности светодиода. Сделать это можно с помощью мультиметра. Тестирование выполняется в следующей последовательности:

Фото Описание работ
Готовим необходимое оборудование. Подойдет обычная китайская модель мультиметра.
Выставляем режим сопротивления, соответствующие 200 Ом.
Прикасаемся контактами к проверяемому элементу. Если светодиод является рабочим, то он начнет светиться.
Внимание! Если контакты перепутать местами, характерного свечения наблюдаться не будет.

Маркировка светодиодов по цвету

Чтобы приобрести светодиод нужного цвета, предлагаем ознакомиться с условным обозначением цветности, входящей в состав маркировки. У CREE оно располагается после обозначения серии светодиодов, и может быть:

  • WHT , если свечение белого цвета;
  • HEW , если высокоэффективного (high efficiency) белого;
  • BWT для белого второго поколения;
  • BLU , если свечение синего света;
  • GRN для зеленого;
  • ROY для королевского (яркого) синего;
  • RED у красного.

Другие производители часто используют другое условное обозначение. Так KING BRIGHT позволяет подобрать модель с излучением не только определенного цвета, но и оттенка. Присутствующее в маркировке обозначение будет соответствовать:

  • Красному (I, SR);
  • Оранжевому (N, SE);
  • Желтому (Y);
  • Синему (PB);
  • Зеленому (G, SG);
  • Белому (PW, MW).
Совет! Ознакомиться с условными обозначениями конкретного производителя, чтобы сделать правильный выбор.

Расшифровка кода маркировки светодиодной ленты

Для изготовления светодиодной ленты используется диэлектрик, имеющий толщину 0,2 мм. На него наносятся токопроводящие дорожки, имеющие контактные площадки под чипы, предназначенные для монтажа SMD-компонентов. Лента включает отдельные модули, имеющие длину 2,5-10 см и рассчитанные на напряжение 12 либо 24 вольта. В состав модуля может входить 3-22 светодиода и несколько резисторов. Длина готовых изделий в среднем составляет 5 метров при ширине 8-40 см.

На бобину либо упаковку наносятся маркировку, в которой содержится вся актуальная информация о светодиодной ленте. Расшифровка маркировки можно увидеть на следующем рисунке:

Статья

Светодиодный фонарик.

http://ua1zh. *****/led_driver/led_driver. htm

Наступила осень, на улице уже темно, а лампочек в подъезде как не было, так и нет. Вкрутил... На следующий день - снова нет. Да, таковы реалии нашей жизни... Купил жене фонарик, но он оказался слишком большой для сумочки. Пришлось сделать самому. Схема не претендует на оригинальность, но, может, кому и сгодится - судя по инет_форумам, интерес к подобной технике не снижается. Предвижу возможные вопросы - "А не проще ли взять готовую микросхему наподобие ADP1110 и не заморачиваться?" Да, разумеется, намного проще,
вот только стоимость этой микросхемы в Чип&Дипе 120 рублей, минимальный заказ - 10шт и срок исполнения - месяц. Изготовление же данной конструкции заняло у меня ровно 1 час 12 минут, включая время на макетирование, при величине затрат 8 рублей на светодиод. Остальное у уважающего себя радиолюбителя всегда найдётся в хламовнике.

Собственно вся схема:

Ч естное слово, буду ругаться, если кто-то спросит - а на каком принципе всё это работает?

А ещё больше буду ругать ся, если потребуют печатку...

Ниже пример практического исполнения конструкции. Для корпуса взята подходящая коробочка из-под какой-то парфюмерии. При желании можно сделать фонарик ещё компактнее - всё определяется используемым корпусом. Сейчас вот думаю засунуть фонарик в корпус от толстого маркера.

Немного о деталях: Транзистор я взял КТ645. Просто вот такой под руку попался. Можно поэкспериментировать с подбором VT1, если есть время и тем самым слегка поднять КПД, но вряд ли можно достичь радикальной разницы с применённым транзистором. Трансформатор намотан на подходящем кольце из феррита с большой проницаемостью диаметром 10мм и содержит 2х20 витков провода ПЭЛ-0.31. Обмотки мотают сразу двумя проводами, можно без скрутки - это же не ШПТЛ... Выпрямительный диод - любой Шоттки, конденсаторы - танталовые smd на напряжение 6 вольт. Светодиод - любой сверхяркий белый на напряжение 3-4 вольта. При использовании в качестве батареи аккумулятора с номинальным напряжением 1.2 вольта ток через имеющийся у меня светодиод составлял 18мА, а при использовании сухой батареи с номиналом 1.5 вольта - 22 ма, что обеспечивает максимальную светоотдачу. В целом устройство потребляло примерно 30-35мА. Учитывая эпизодическое использование фонарика, батареи вполне может хватить и на год.

В момент подачи напряжения батареи на схему, падение напряжения на резисторе R1, включенным последовательно со светодиодом высокой яркости, равно 0 В. Следовательно, транзистор Q2 выключен, а транзистор Q1 находится в насыщении. Насыщенное состояние Q1 включает MOSFET транзистор, тем самым подавая напряжение батареи на светодиод через индуктивность. Так как ток, протекающий через резистор R1 возрастает, это включает транзистор Q2 и выключает транзистор Q1 и, следовательно, MOSFET транзистор. Во время выключенного состояния MOSFET транзистора, индуктивность продолжает обеспечивать питание светодиода через диод Шоттки D2. В качестве HB светодиода используется 1 Вт Lumiled светодиод белого свечения. Резистор R1 помогает управлять яркостью свечения светодиода. Увеличение номинала резистора R1 уменьшает яркость свечения. http://www. *****/shem/schematics. html? di=55155

Делаем современный фонарик

http://www. *****/schemes/contribute/constr/light2.shtml

Рис. 1. Принципиальная схема стабилизатора тока

Используя же давно известную в радиолюбительских кругах схему (рис. 1) импульсного стабилизатора тока с применением современных доступных радиодеталей можно собрать очень неплохой светодиодный фонарь.

Автором для доработки и переделки был приобретен беспородный фонарь с аккумулятором 6 В 4 Ач, с «прожектором» на лампе 4,8 В 0,75 А и источником рассеянного света на ЛДС 4 Вт. «Родная» накальная лампочка почти сразу почернела ввиду работы на завышенном напряжении и вышла из строя после нескольких часов работы. Полной зарядки аккумулятора при этом хватало на 4-4,5 часа работы. Включение ЛДС вообще нагружало аккумулятор током около 2,5 А, что приводило к его разряду через 1-1,5 часа.

Для усовершенствования фонаря на радиорынке были приобретены белые светодиоды неизвестной марки: один с лучом расходимостью 30o и рабочим током 100 мА для «прожектора» а также десяток матовых с рабочим током 20 мА для замены ЛДС. По схеме (рис.1) был собран генератор стабильного тока, имеющий КПД порядка 90%. Схемотехника стабилизатора позволила использовать для переключения светодиодов штатный переключатель. Указанный на схеме светодиод LED2 представляет собой батарею из 10 параллельно соединенных одинаковых белых светодиодов, расчитаных на силу тока 20 мА каждый. Параллельное соединение светодиодов кажется не совсем целесообразным в виду нелинейности и крутизны их ВАХ, но как показал опыт, разброс параметров светодиодов настолько мал, что даже при таком включении их рабочие токи практически одинаковы. Важно только полная идентичность светодиодов, по возможности их надо купить «из одной заводской упаковки».

После доработки «прожектор» конечно стал немного послабее, но вполне достаточен, режим рассеянного света визуально не изменился. Но теперь благодаря высокому КПД стабилизатора тока при использовании направленного режима от аккумулятора потребляется ток 70 мА, а в режиме рассеянного светамА, то есть фонарь может работать без подзарядки примерно 50 или 25 часов соответственно. Яркость от степени разряженности аккумулятора не зависит благодаря стабилизации тока.

Схема стабилизатора тока работает следующим образом: При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4 В, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 И Т2 закроются, Т3 -- откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях: особых требований к деталям не предъявляется, можно использовать любые малогабаритные резисторы и конденсаторы. Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3 А и напряжение более 30 В. Диод D1 должен быть обязательно с барьером Шоттки на ток более 1 А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%. Катушка индуктивности может быть самодельная, мотают ее проводом не тоньше 0,6 мм, лучше - жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.

Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5. При необходимости ток может быть увеличен до 1 А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.

Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.

Собирается устройство навесным монтажом в свободных полостях корпуса фонарика и заливается термоклеем для герметизации.

Неплохо также добавить в фонарь новое устройство: индикатор степени заряженности аккумулятора (рис. 2).

Рис. 2. Принципиальная схема индикатора степени зарядки аккумулятора.

Устройство представляет собой по сути вольтметр с дискретной светодиодной шкалой. Этот вольтметр имеет два режима работы: в первом он оценивает напряжение на разряжаемом аккумуляторе, а во втором -- напряжение на заряжаемом аккумуляторе. Потому, чтобы правильно оценить степень заряженности для этих режимов работы выбраны разные диапазоны напряжений. В режиме разряда аккумулятор можно считать полностью заряженным, когда на нем напряжение равно 6,3 В, когда он полностью разрядится, напряжение снизится до 5,9 В. В процессе же зарядки напряжения другие, полностью заряженным считается аккумулятор, напряжение на клеммах которого 7,4 В. В связи с этим и выработан алгоритм работы индикатора: если зарядное устройство не подключено, то есть на клемме «+ Зар.» нет напряжения, «оранжевые» кристаллы двухцветных светодиодов обесточены и транзистор Т1 заперт. DA1 формирует опорное напряжение, определяемое резистором R8. Опорное напряжение подается на линейку компараторов ОР1.1 - ОР1.4, на которых и реализован собственно вольтметр. Чтобы увидеть, сколько заряда осталось в аккумуляторе, надо нажать на кнопку S1. При этом будет подано напряжение питания на всю схему и в зависимости от напряжения на аккумуляторе загорится определенное количество зеленых светодиодов. При полном заряде будет гореть весь столбик из 5 зеленых светодиодов, при полном разряде -- только один, самый нижний светодиод. При необходимости напряжение корректируют, подбирая сопротивление резистора R8. Если включается зарядное устройство, через клемму «+ Зар.» и диод D1 напряжение поступает на схему, включая «оранжевые» части светодиодов. Кроме того, открывается Т1 и подключает параллельно резистору R8 резистор R9, в результате чего опорное напряжение, формируемое DA1 увеличивается, что приводит к изменению порогов срабатывания компараторов -- вольтметр перестраивается на более высокое напряжение. В этом режиме все время, пока аккумулятор заряжается, индикатор отображает процесс его зарядки также столбиком светящихся светодиодов, только на этот раз столбик оранжевый.

Самодельный фонарик на светодиодах

Статья посвящается туристам-радиолюбителям, и всем, кто так или иначе сталкивался с проблемой экономичного источника освещения (например палатки в ночное время). Хотя в последнее время фонарями на светодиодах никого не удивишь, я все же поделюсь своим опытом в создании подобного прибора, а также постараюсь ответить на вопросы тех, кто захочет повторить конструкцию.

Примечание: статья рассчитана на "продвинутых" радиолюбителей, хорошо знающих закон Ома и державших в руках паяльник.

За основу был взят покупной фонарик "VARTA" с питанием от двух батареек типа АА:

https://pandia.ru/text/78/440/images/image006_50.jpg" width="600" height="277 src=">

А вот как выглядит схема в собранном виде:

опорных" точек служат ножки DIP-микросхемы.

Несколько пояснений к схеме: Электролитические конденсаторы - танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки - SM5818. Дроссели пришлось соединить два в параллель, т. к. не оказалось подходящего номинала. Конденсатор С2 - К10-17б. Светодиоды - сверхяркие белые L-53PWC "Kingbright". Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.
Выходное напряжение стабилизатора в данной схеме включения равно 3.3В. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1В, то лишние 200мВ пришлось высеять на резисторе, включенном последовательно с выходом. Кроме того, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось - различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Пожалуй, это самая интересная деталь. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции. Это я решил сделать для того, чтобы не курочить фонарик, и при случае в него можно было бы вставить обычную лампочку. В результате долгих раздумий на предмет убиения двух зайцев родилась вот такая конструкция:

Думаю, что особых пояснений здесь не требуется. Потрошится родная лампочка от этого же фонарика, во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу с некоторым растопыром для большего угла охвата (пришлось немного подпилить их у основания). Плюсовые выводы (так получилось по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. В результате получается такой вот "ламподиод", встающий на место обычной лампочки накаливания.

И в заключение, о результатах испытаний. Для тестирования были взяты полудохлые батарейки, чтобы быстрее довести их до финиша и понять, на что способен новоиспеченный фонарь. Измерялось напряжение батарей, напряжение на нагрузке и ток через нагрузку. Прогон начинался с напряжения батареи 2.5В, при котором светодиоды напрямую уже не горят. Стабилизация выходного напряжения (3.3В) продолжалась вплоть до снижения напряжения питания до ~1.2В. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5В! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА. Диоды все еще горели, но их яркости хватало только на освещение замочной скважины в темном подъезде. После этого батарейки практически перестали разряжаться, т. к. схема перестала потреблять ток. Погоняв схему в таком режиме еще минут 10, мне стало скучно, и я ее выключил, т. к. дальнейший прогон интереса не представлял.

Яркость свечения сравнивалась с обычной лампочкой накаливания при такой же потребляемой мощности. В фонарик вставлялась лампочка 1В 0.068А, которая при напряжении 3.1В потребляла приблизительно такой же ток, что и светодиоды (около 100мА). Результат в пользу светодиодов однозначно.

Часть II. Немного о КПД или "Нет предела совершенству".

Прошло больше месяца с тех пор как я собрал свою первую схему для питания светодиодного фонарика и написал об этом в вышеизложенной статье. К моему удивлению, тема оказалась очень популярной, судя по количеству отзывов и посещений сайта. С тех пор у меня появилось некоторое понимание предмета:) , и я счел своим долгом подойти к теме более серьезно и провести более тщательные исследования. На эту мысль меня навело также и общение с людьми, решавшими подобные задачи. О некоторых новых результатах я и хочу рассказать.

Во-первых, мне следовало бы сразу измерить КПД схемы, который оказался подозрительно низким (около 63% при свежих батарейках). Во вторых, я понял главную причину такого низкого КПД. Дело в том, что те миниатюрные дроссели, что я использовал в схеме, имеют чрезвычайно высокое омическое сопротивление - около 1.5ом. Ни о какой экономии электроэнергии с такими потерями не могло быть и речи. В-третьих я обнаружил, что величина индуктивности и выходной емкости тоже сказываются на КПД, хотя и не так заметно.

Использовать стержневой дроссель типа ДМ как-то не хотелось из-за его большого размера, поэтому я решил изготовить дроссель самостоятельно. Идея проста - нужен маловитковый дроссель, намотанный относительно толстым проводом, и в то же время достаточно компактный. Идеальным решением оказалось кольцо из µ-пермаллоя с проницаемостью порядка 50. В продаже есть готовые дроссели на таких колечках, широко используемые во всевозможных импульсных БП. В моем распоряжении оказался такой дроссель на 10мкГ, имеющий 15 витков на кольце К10х4х5. Перемотать его не было никаких проблем. Индуктивность пришлось подобрать по измерению КПД. В диапазоне 40-90мкГ изменения были очень незначительные, меньше 40 - более заметные, а на 10мкГ стало совсем плохо. Поднимать выше 90мкГ я не стал, т. к. возрастало омическое сопротивление, а более толстый провод "раздувал" габариты. В итоге, более из эстетических соображений, я остановился на 40 витках провода ПЭВ-0.25, т. к. они ровно улеглись в один слой и получилось около 80мкГ. Активное сопротивление получилось около 0.2 ом, а ток насыщения по расчетам - более 3А, что хватает за глаза.. Выходной (а заодно и входной) электролит я заменил на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ. В результате конструкция претерпела некоторые изменения, что, впрочем, не помешало ей сохранить свою компактность:

Лабораторные работы" href="/text/category/laboratornie_raboti/" rel="bookmark">лабораторную работу и снял основные характеристики схемы:

1. Зависимость выходного напряжения, измеренного на емкости С3, от входного. Эту характеристику я снимал и раньше и могу сказать, что замена дросселя на более добротный дала более горизонтальную полочку и резкий излом.

2. Интересно было также проследить изменение потребляемого тока по мере разряда батареек. Хорошо видна типичная для ключевых стабилизаторов "отрицательность" входного сопротивления. Пик потребления пришелся на точку, близкую к опорному напряжению микросхемы. Дальнейший спад напряжения привел к снижению опоры, а значит и выходного напряжения. Резкий спад тока потребления в левой части графика вызван нелинейностью ВАХ диодов.

3. Ну и наконец, обещаный КПД. Здесь он измерялся уже по конечному эффекту, т. е. по рассеиваемой мощности на светодиодах. (Процентов 5 теряется на балластном сопротивлении). Производители чипа не наврали - при правильной схеме положенные 87% он дает. Правда это только при свежих батарейках. По мере роста потребляемого тока КПД, естественно, снижается. В экстремальной точке он вообще падает до уровня паровоза. Рост КПД при дальнейшем снижении напряжения практической ценности не представляет, т. к. фонарик уже находится "на издыхании" и светит очень слабо.

Глядя на все эти характеристики можно сказать, что фонарь уверенно светит при спаде питающего напряжения до 1В без заметного снижения яркости, т. е. схема фактически отрабатывает трехкратную просадку напряжения. Обычная лампочка накаливания при таком разряде батарей уже вряд ли будет пригодна для освещения.

Если что-то кому-то осталось неясным - пишите. Отвечу письмом, и\или дополню данную статью.

Владимир Ращенко, E-mail: rashenko (at) inp. nsk. su

май, 2003г..

Велофара - что дальше?

Итак, первая фара построена, испытана и "обкатана". Каковы дальнейшие перспективные направления светодиодного фаростроения? Первым этапом, наверное, будет дальнейшее наращивание мощности. Планирую постройку 10-диодной фары с переключаемым режимом работы 5\10. Ну а дальнейшее улучшение качества требует применения сложных микроэлектронных компонентов. Например, мне кажется, неплохо бы избавиться от гасящих\выравнивающих резисторов - ведь на них теряется 30-40% энергии. И стабилизацию тока через светодиоды независимо от разряженности источника хотелось бы иметь. Наилучшим вариантом было бы последовательное включение всей цепочки светодиодов со стабилизацией тока. А чтобы не увеличивать количество последовательных батарей, нужно чтобы эта схема еще и напряжение увеличивала с 3 или 4,5 В до 20-25 В. Такие вот, так сказать, ТУ на разработку "идеальной фары".
Оказалось, специально для решения таких задач выпускаются специализированные ИС. Область их применения - управление светодиодами подсветки ЖК-мониторов для мобильных устройств - ноутбуки. сотовые телефоны и т. д. Вывел меня на эту информацию Дима gdt (at) ***** - СПАСИБО!

В частности, линейку ИС различного назначения для управления светодиодами выпускает фирма Maxim (Maxim Integrated Products, Inc), на сайте которой (http://www. ) была найдена статья "Solutions for Driving White LEDs" (Apr 23, 2002). Некоторые из этих "решений" отлично подойдут для велофары:

https://pandia.ru/text/78/440/images/image015_32.gif" width="391" height="331 src=">

Вариант 1 . Микросхема MAX1848, управление цепочкой из 3х светодиодов.

https://pandia.ru/text/78/440/images/image017_27.gif" width="477" height="342 src=">

Вариант 3: Возможна другая схема включения обратной связи - с делителя напряжения.

https://pandia.ru/text/78/440/images/image019_21.gif" width="534" height="260 src=">

Вариант 5. Максимальная мощность, несколько цепочек светодиодов, микросхема MAX1698

токовое зеркало", микросхема MAX1916.

https://pandia.ru/text/78/440/images/image022_17.gif" width="464" height="184 src=">

Вариант 8. Микросхема MAX1759.

https://pandia.ru/text/78/440/images/image024_12.gif" width="496" height="194 src=">

Вариант 10 . Микросхема MAX619 - пожалуй. самая простая схема включения. Работоспособность при падении входного напряжения до 2 В. Нагрузка 50 мА при Uвх.>3 В.

https://pandia.ru/text/78/440/images/image026_15.gif" width="499" height="233 src=">

Вариант 12 . Микросхема ADP1110 - по слухам, более распространена, чем MAXы, работает начиная с Uвх=1,15 В (!!! всего одна батарейка!!! ) Uвых. до 12 В

https://pandia.ru/text/78/440/images/image028_15.gif" width="446" height="187 src=">

Вариант 14 . Микросхема LTC1044 - очень простая схема подключения, Uвх=от1,5 до 9 В; Uвых= до 9 В; нагрузка до 200мА (но впрочем, типовое 60 мА)

Как видите, выглядит все это весьма заманчиво:-) Осталось только где-то найти эти микросхемы незадорого....

Ура! Найдена ADP1руб. с НДС) Строим новую мощную фару!

10 светодиодов, с переключением 6\10, пять цепочек по два.

MAX1848 White LED Step-Up Converter in SOT23

MAX1916 Low-Dropout, Constant-Current Triple White LED Bias Supply

Display Drivers and Display Power Application Notes and Tutorials

Charge Pump Versus Inductor Boost Converter for White LED Backlights

Buck/Boost Charge-Pump Regulator Powers White LEDs from a Wide 1.6V to 5.5V Input

Analog ICs for 3V Systems

На сайте Rainbow Tech: Maxim: Приборы DC-DC преобразования (сводная таблица)

На сайте Premier Electric: Импульсные регуляторы и контроллеры для ИП без гальв. развязки (сводная таблица)

На сайте Averon - микросхемы для источников питания (Analog Devices) - сводная таблица

Питание светодиодов с помощью ZXSC300

Давиденко Юрий. г. Луганск
Адрес Email -
david_ukr (at) ***** (замените (at) на @)

Целесообразность использования светодиодов в фонарях, велофарах, в устройствах местного и дежурного освещениям на сегодняшний день не вызывает сомнений. Светоотдача и мощность светодиодов растет, а цены на них падают. Источников света, в которых вместо привычной лампы накаливания используются светодиоды белого свечения становиться всё больше и купить их не составляет труда. Магазины и рынки заполнены светодиодной продукцией китайского производства. Но качество этой продукции оставляет желать лучшего. По этому возникает необходимость в модернизации доступных (в первую очередь по цене) светодиодных источников света. Да и заменить лампы накаливания на светодиоды в добротных фонарях советского производства тоже имеет смысл. Надеюсь, что приведенная далее информация будет не лишней.

    Скачать статью в формате PDF - 1,95Мб (Что это такоеКб

Как известно, светодиод имеет нелинейную вольтамперную характеристику с характерной "пяткой" на начальном участке.

Рис. 1 Вольт-амперная характерисика светодиода белого свечения.

Как мы видим, светодиод начинает светиться, если на него подано напряжение больше 2,7 В. При питании его от гальванической или аккумуляторной батареи , напряжение которой процессе эксплуатации постепенно уменьшается, яркость излучения будет изменяться широких пределах. Чтобы избежать, этого необходимо питать светодиод стабилизированным током. А ток должен быть номинальным для данного типа светодиода. Обычно для стандартных 5-мм светодиодов он составляет среднем 20 мА.

По этой причине приходится применять электронные стабилизаторы тока, которые ограничивают стабилизируют ток, протекающий через светодиод. Часто бывает необходимо запитать светодиод от одного или двух элементов питания напряжением 1,2 – 2,5 В. Для этого используют повышающие преобразователи напряжения. Поскольку любой светодиод является, по сути, токовым прибором, точки зрения энергоэффективности выгодно обеспечивать прямое управление током, протекающим через него. Это позволяет исключить потери, возникающие на балластном (токоограничительном) резисторе.

Одним из оптимальных вариантов питания различных светодиодов от автономных источников тока небольшого напряжения 1-5 вольт является использование специализированной микросхемы ZXSC300 фирмы ZETEX. ZXSC300 это импульсный (индуктивный) повышающий преобразователь DC-DC c частотно-импульсной модуляцией.

Рассмотрим принцип работы ZXSC300.

На рисунке Рис.2 показана одна из типовых схем питания белого светодиода импульсным током с помощью ZXSC300. Импульсный режим питания светодиода позволяет максимально эффективно использовать энергию, имеющуюся в батарейке или аккумуляторе.

Кроме самой микросхемы ZXSC300 преобразователь содержит: элемент питания 1,5 В, накопительный дроссель L1, силовой ключ – транзистор VT1, датчик тока – R1.

Работает преобразователь традиционным для него образом. В течение некоторого времени за счет импульса, поступающего с генератора G (через драйвер), транзистор VT1 открыт и ток через дроссель L1 нарастает по линейному закону. Процесс длиться до момента, когда на датчике тока - низкоомном резисторе R1 падение напряжение достигнет величины 19 мВ. Этого напряжения достаточно для переключения компаратора (на второй вход которого подано небольшое образцовое напряжение с делителя). Выходное напряжение с компаратора поступает на генератор, в результате чего силовой ключ VT1 закрывается и энергия, накопленная в дросселе L1, поступает в светодиод VD1. Далее процесс повторяется. Таким образом, из первичного источника питания в светодиод поступает фиксированные порции энергии, которые он преобразует в световую.

Управление энергией происходит с помощью частотно-импульсной модуляции ЧИМ (PFM Pulse Frequency Modulation). Принцип ЧИМ заключается в том, что изменяется частота, а постоянным остаётся длительность импульса или паузы, соответственно, открытого (On-Time) и закрытого (Off-Time) состояния ключа. В нашем случаи неизменным остаётся время Off-Time, т. е. длительность импульса, при котором внешний транзистор VT1 находится в закрытом состоянии. Для контроллера ZXSC300 Toff составляет 1,7 мкс.

Это время достаточно для передачи накопленной энергии из дросселя в светодиод. Длительность импульса Ton, в течение которого открыт VT1, определяется величиной токоизмерительного резистора R1, входным напряжением, и разницей между входным и выходным напряжением, а энергия, которая накапливается в дросселе L1, будет зависеть от его величины. Оптимальным считается, когда полный период Т равен 5мкс (Toff +Ton). Соответственна рабочая частота F=1/5мкс =200 кГц.

При указанных на схеме Рис.2 номиналах элементов осциллограмма импульсов напряжения на светодиоде имеет вид

Рис.3 вид импульсов напряжения на светодиоде. (сетка 1В/дел, 1мкс/дел)

Немного подробнее об используемый деталях.

Транзистор VT1 - FMMT617, n-р-n транзистор с гарантированным напряжением насыщения коллектор-эмиттер не более 100 мВ при токе коллектора 1 А. Способен выдерживать импульсный ток коллектора до 12 А (постоянный 3 А), напряжение коллектор-эмиттер 18 В, коэффициент передачи тока 150...240. Динамические характеристики транзистора: время включения/ выключения 120/160 нс, f =120 МГц, выходная емкость 30 пф.

FMMT617 является лучшим коммутационным устройством, которое можно использовать совместно с ZXSC300. Он позволяет получить высокий КПД преобразования при входном напряжении меньше одного вольта.

Накопительный дроссель L1.

В качестве накопительного дросселя можно использовать как промышленные SMD Power Inductor, так и самодельные. Дроссель L1 должен выдерживать максимальный ток силового ключа VT1 без насыщения магнитопровода. Активное сопротивление обмотки дросселя не должно превышать 0,1 Ом иначе КПД преобразователя заметно снизиться. В качестве сердечника для самостоятельной намотки хорошо подходят кольцевые магнитопроводы (К10x4x5) от дросселей фильтров питания использующиеся в старых компьютерных материнских платах. На сегодняшний день б/у компьютерное «железо» можно приобрести по бросовым ценам на любом радиорынке. А «железо» - это неисчерпаемый источник разнообразный деталей для радиолюбителей. При самостоятельной намотки для контроля понадобится измеритель индуктивности.

Токоизмерительный резистор R1. Низкоомный резистор R1 47мОм получен параллельным соединением двух SMD резисторов типоразмера1206 по 0,1 Ом.

Светодиод VD1.

Светодиод VD1 белого свечения с номинальным рабочим током 150 мА. В авторской конструкции используется два четырехкристальных светодиода соединенные параллельно. Номинальный ток одного из них составляет 100 мА, другого 60 мА. Рабочий ток светодиода определен путем пропускания через него, стабилизированного постоянного тока и контроля температуры катодного (минусового) вывода, который является радиатором и отводит тепло от кристалла.

При номинальном рабочем токе температура теплоотводящего вывода не должна превышатьградусов. Вместо одного светодиода VD1 также можно использовать восемь параллельно соединенных стандартный 5 мм светодиодов с током 20 мА.

Внешний вид устройства

Рис. 4a.

Рис. 4b.

Показана на Рис. 5

Рис. 5 (размер 14 на 17 мм).

При разработке плат для подобных устройств необходимо стремиться к минимальным значениям емкости и индуктивности проводника соединяющий К VT1 с накопительным дросселем и светодиодом, а также к минимальным индуктивности и активному сопротивлению входных и выходных цепей и общего провода. Сопротивление контактов и проводов через которые поступает напряжение питания должно быть тоже минимально.

На следующих схемах Рис. 6 и Рис. 7 показан способ питания мощных светодиодов типа Luxeon с номинальным рабочим током 350 мА

Рис. 6 Способ питания мощных светодиодов типа Luxeon

Рис. 7 Способ питания мощных светодиодов типа Luxeon - ZXSC300 запитана от выходного напряжения.

В отличие от рассмотренной ранее схемы здесь питание светодиода происходит не импульсным, а постоянным током . Это позволяет легко контролировать рабочий ток светодиода и КПД всего устройства. Особенность преобразователя на Рис. 7 заключается в том, что ZXSC300 запитана от выходного напряжения. Это позволяет ZXSC300 работать (после запуска) при снижении входного напряжения вплоть до 0,5 В. Диод VD1 - Шотки рассчитанный на ток 2А. Конденсаторы С1 и С3 - керамические SMD, С2 и С3 - танталовые SMD.Количество светодиодов последовательно соединенных.

Сопротивление токоизмерительного резистора, мОм.

Индуктивность накопительного дросселя, мкГн.

На сегодняшний день стали доступны в использовании мощные 3 – 5 Вт светодиоды различных производителей (как именитых так и не очень).

И в этом случаи применение ZXSC300 позволяет легко решить задачу эффективного питание светодиодов с рабочим током 1 А и более.

В качестве силового ключа в данной схеме удобно использовать подходящий по мощности n-канальный (работающий от 3 В) Power MOSFET, можно также использовать сборку серии FETKY MOSFET (с диодом Шотки в одном корпусе SO-8).

С помощью ZXSC300 и нескольких светодиодов можно легко вдохнуть вторую жизнь в старый фонарь. Модернизации был подвергнут аккумуляторный фонарь ФАР-3.

Рис.11

Светодиоды использовались 4-х кристальные с номинальным током 100 мА - 6 шт. Соединены последовательно по 3. Для управления световым потоком применены два преобразователя на ZXSC300, имеющих независимое вкл/выкл. Каждый преобразователь работает на свою тройку светодиод.

Рис.12

Платы преобразователей выполнены на двухстороннем стеклотекстолите, вторая сторона соединена с минусом питания.

Рис.13

Рис.14

В фонаре ФАР-3 в качестве элементов питания используются три герметичных аккумулятора НКГК-11Д (KCSL 11). Номинальное напряжение этой батареи 3,6 В. Конечное напряжение разряженной батареи составляет 3 В (1 В на элемент). Дальнейший разряд нежелателен т. к. это приводит к сокращению срока службы батареи. А дальнейший разряд возможен - преобразователи на ZXSC300 работают, как мы помним, вплоть до 0,9 В.

Поэтому для контроля напряжения на батарее было спроектировано устройство, схема которого показана на Рис. 15.

Рис.15

В данном устройстве используется недорогая доступная элементная база. DA1 - LM393 всем известный сдвоенный компаратор. Опорное напряжения 2,5 В получаем с помощью TL431 (аналог КР142ЕН19). Напряжение срабатывания компаратора DA1.1 около 3 В задаётся делителем R2 - R3 (для точного срабатывания возможно потребуется подбор этих элементов). Когда напряжение на батареи GB1 снижается до 3 В загорается красный светодиод HL1, если напряжение больше 3 В то HL1 гаснет и загорается зеленый светодиод HL2. Резистор R4 определяет гистерезис компаратора.

Печатная плата устройства контроля показана на Рис. 16 (размер 34 на 20 мм).

Если у вас возникли трудности с приобретением микросхемы ZXSC300, транзистора FMMT617 или низкоомных SMD резисторов 0,1 Ом, можно обращаться к автору на e-mail david_ukr (аt) *****

Вы можете приобрести следующие компоненты (доставка почтой)

Элементы

Количество

Цена, $

Цена, грн

Микросхема ZXSC 300 + транзистор FMMT 617

Резистор 0,1 Ом SMD типоразмер 0805

Печатная плата Рис. 8

    Скачать статью в формате PDF - 1,95Мб Скачать статью в формате DjVU (Что это такоеКб

Делаем фонарик на светодиодах своими руками

Подходят различной мощности. Световая эффективность устройства не должна превышать 80 лм. Также внимание следует обращать на драйвер. Как правило, он устанавливается с выходным конденсатором. У некоторых моделей имеется усилитель. В среднем потребление тока у них равняется 3 А.

Если рассматривать чувствительные модификации, то у них установлена система защиты от перепадов напряжения. Для того чтобы более подробно разобраться в вопросе, необходимо рассмотреть конкретные модели.

Схемы с емкостными конденсаторами

Схемы фонариков на светодиодах с емкостными конденсаторами включают волновые фильтры. В данном случае триггеры используются на полупроводниковой основе. Как правило, параметр выходного напряжения у них не превышает 20 В. Для снижения чувствительности используются преобразователи. Драйверы у моделей устанавливаются с различной пропускной способностью. Если рассматривать светодиод на 30 В, то у него имеется трансивер.

Использование демпфирующих конденсаторов

Схема светодиода с демпфирующим конденсатором включает в себя контактные фильтры. Всего у моделей имеется два преобразователя. Драйвер к светодиоду подсоединяется через обмотку. У некоторых модификаций предусмотрен компактный трансивер. Чаще всего он используется с усилителем.

Характеристики LED с маркировкой 530

Это универсальные и для фонариков. Характеристики устройств указывают на высокий коэффициент проводимости. Производятся светодиоды на 20 и 25 В. Если рассматривать первый вариант, то световая эффективность устройства в среднем равняется 60 лм. Коэффициент цветопередачи в данном случае зависит от проводимости трансивера. У многих моделей усилитель используется без преобразователя.

Показатель потребления тока у светодиодов не превышает 2,5 А. Время включения моделей данного типа составляет около 6 мс. Если рассматривать светодиоды на 25 В, то у них используется только импульсный трансивер. У многих моделей предусмотрен один усилитель. Драйвер подсоединяется с помощью преобразователя. Параметр светового потока лежит в районе 65 лм. Время включения светодиодов данного типа равняется 7 мс.

LED 640 (светодиоды для фонариков): характеристики, фото

Схема светодиода указанной серии включает в себя преобразователь фазового типа. Для повышения чувствительности используются фильтры. Усилители чаще всего применяются на магнитной основе. Параметр световой эффективности в устройствах равняется 65 лм. Также важно отметить, что показатель потребления тока не превышает 4,2 А. Отклонения частоты составляет в среднем 4 Гц.

Срок службы светодиодов данного типа составляет три года. К недостаткам устройств можно отнести малую проводимость тока у драйверов. Показатель яркости у них крайне низкий. Световая отдача, как правило, не превышает 5 %. Эти светодиоды для фонариков 6 вольт подходят хорошо.

Использование светодиодов LED 765

Для устройства на 12 В используются указанные светодиоды для фонариков. Характеристики 2014 года указывают на повышенный уровень потребления тока. этой модификации равняется 45 лм. Также важно отметить, что модель подходит для импульсных усилителей. Драйвер в устройстве используется на 6,5 мк. Фазовые помехи указанным светодиодам не страшны.

Световая эффективность в среднем равняется 70 лм. Срок службы устройства не превышает четыре года. Коэффициент цветопередачи равняется 80 %. Для фонариков с регуляторами модель подходит отлично. В данном случае подключение устройств осуществляется через контактный переходник.

Схема LED 840

Это компактные и универсальные светодиоды для фонариков. Характеристики модели в первую очередь говорит о высоком показателе рассеивания. Коэффициент пульсации у нее максимум достигает 80 %. Время включения устройства составляет 5 мс. Если верить специалистам, то для фонариков на 12 В модель подходит замечательно. Усилитель в устройстве установлен поглощающего типа.

Всего у модели имеется два драйвера. Триггер у светодиода используется с переходником. Для решения проблем с тепловыми потерями стандартно применяется конденсатор. Световая эффективность представленной модели равняется 67 лм. Показатель проводимости не превышает 10 мк. В данном случае потребление тока составляет 0,3. Минимальная допустимая температура светодиода только -10 гарусов. Система защиты от перегрева у модели отсутствует.

Характеристики LED 827

Моделям с подходят указанные светодиоды для фонариков. Характеристики устройства говорят о наличие качественных проводных трансиверов. Усилители у модели установлены открытого типа. Всего в устройстве используется два конденсатора. С минимизацией тепловых потерь они справляются отлично. Минимальная допустимая температура светодиода равняется -15 градусов.

Для фонариков на 15 В они не подходят. Система защиты в устройстве используется с фильтрами. Драйвер у модели предусмотрен на 4,5 мк. Потребление тока равняется не более 4 А. Время включения светодиода в среднем составляет 6 мс. Коэффициент пульсации модели - 85 %. Световая эффективность, как правило, не превышает 50 лм.

Светодиоды LED 830

На устройства в 10 В отлично подходят данные светодиоды для фонариков. Характеристики у них довольно хорошие. Время включения - 5 мс, световая эффективность 65 лм, а потребление тока равняется 3,3 А. Преобразователь у модели используется фазового типа. Если верить специалистам, то для фонариков на 15 В модель не подходит.

Трансивер в указанном светодиоде отсутствует. Непосредственно драйвер установлен с проводимостью 4,5 мк. Проблемы с выпрямлением тока решаются благодаря конденсаторам. Коэффициент пульсации у модели максимум достигает 90 %. Срок службы представленного устройства - три года. Минимальная допустимая температура светодиода не превышает -20 градусов.

Характеристики LED серии ЛБ

Для фонариков на 15 В подходит указанный светодиод. Характеристики модели говорят о повышенном коэффициенте цветопередачи. Выходное напряжение модели - 15 В. Фильтр в устройства используется волнового типа. Драйвер в данном случае подсоединяется через проводник. Трансивер у светодиода используется с переходником. Конденсатор установлен открытого типа. Всего у модели есть два триггера. В данном случае потребление энергии составляет 2,5 А.

Световой поток устройства максимум достигает 65 лм. Коэффициент пульсации у модели незначительный. Также к недостаткам можно приписать малый уровень минимально допустимой температуры. Китайский фонарик на светодиодах включается за 4 мс. Проблемы с выпрямление тока у модели возникают редко. Для фонариков на 10 В указанная модель не подходит. Система защиты от перегрева у светодиода отсутствует. Отклонение частоты у модели равняется 5 Гц. Эти светодиоды для фонариков Cree подходят замечательно.

дневного света

Указанные светодиоды для фонариков производятся с качественными усилителями импульсного типа. Всего у модели установлено два конденсатора. Трансивер стандартно используется проводного типа. Также важно отметить, что отклонение частоты максимум составляет 4 Гц. Потребление тока у светодиода не превышает 3 А.. Световой поток устройства равняется 70 лм. Световая отдача у модели незначительная.

Если верить специалистам, то для фонариков на 12 В модель подходит замечательно. Непосредственно подключение драйвера осуществляется через переходник. В среднем время включения равняется 6 мс. Срок службы представленной модели 5 лет. Минимальная допустимая температура светодиода равняется -15 градусам.

серии ТБ (тёпло-белого света)

Это простые и не дорогие светодиоды для фонариков. Характеристика устройства говорит о том, что коэффициент цветопередачи у модели невысокий. Также важно отметить, что выходное напряжение равняется 8 В. Срок службы светодиода составляет три года. Трансивер у модификации используется высокой чувствительности. Всего у модели предусмотрено два конденсатора. Если верить экспертам, то для фонариков на 10 В устройство не подходит. Показатель потребления тока у модели равняется 2 А. Световой потока светодиода максимум достигает 65 лм.

Проблемы с отрицательной модуляцией встречаются редко. К недостаткам можно отнести только малый параметр проводимости. Фильтры в устройстве используются только открытого типа. Максимальное отклонение частоты у светодиода достигает 5 Гц. Для снижения чувствительности на конденсаторе применится триггер. Коэффициент пульсации у модели незначительный. Для установки светодиода необходим проводной переходник.

Особенности моделей LED серии ЛХБ (холодно-белого света)

Указанные светодиоды характеристики имеют хорошие. В первую очередь важно отметить, что коэффициент цветопередачи равняется 80%. В данном случае срок службы составляет три года. Непосредственно выходное напряжение составляет 12 В. Время включения равняется 5 мс. В данном случае усилитель используется с переходником. Если верить специалистам, то проблемы с тепловыми потерями встречаются редко. Конденсаторы у модели уставлены проходного типа.

Как правило, когда приходит мысль о покупке фонаря - будь-то по необходимости или «на всякий случай» - мало кто понимает, что современный фонарь уже не тот, что был прежде. Поэтому в представлении большинства людей фонарик все еще остается всего лишь трубкой со слабой лампочкой и батарейками, которых хватает ненадолго.

Фонарь в повседневной жизни человека

На самом же деле осветительные приборы сильно изменились. Технологический прогресс в этой области идет семимильными шагами, и за последние несколько лет выпущено большое количество моделей, радикально превосходящих своих предшественников. Появилось множество особенностей, определяющих причину, почему в одних условиях лучше этот фонарик, а в некоторых - другой. Давайте подробней рассмотрим, что собой представляет современный фонарь, и на что следует обратить внимание при выборе.

I. Назначение и способы применения фонарей

Этот «малыш» будет практически незаметен на связке ключей, но сможет при необходимости осветить местность на несколько десятков метров

Изначально необходимо понимать, для каких целей покупается фонарь. Вряд ли только, чтобы «видеть в темноте»! Для чего потребуется фонарик: для работы, для дома, для поисковых и спасательных операций, походов, подводных погружений, охоты или исследования всяких укромных и темных уголков, вроде горных пещер или недр городской канализации? В зависимости от предназначения фонарика можно определить, какие из его функций действительно нужны, а какие обернутся только дополнительными финансовыми затратами или бесполезным увеличением массы и габаритов. Например, в качестве фонаря для дачи или дома вполне хватит самого простого образца - даже необязательно светодиодного, а хоть бы и на лампе накаливания, с питанием от щелочных батарей типоразмера D, потому что большие габариты и масса (в раз умных пределах) не являются в этом случае решающим или даже значимым фактором. Для туризма лучшим вариантом будет многорежимный светодиодный фонарь на современных литиевых аккумуляторах/батарейках, поскольку здесь важна не только яркость, но и минимальная масса элементов питания, которые придется носить с собой. Если же необходимо освободить обе руки, пригодится фонарь с креплением на голове. Давайте с позиций рядового потребителя рассмотрим основные возможности всех типов современных фонариков, виды светодиодов для фонарей и преимущества каждого из них. В качестве примера будут представлены фонари производства компании Olight.

Фонарик-брелок, или «наключник» , как следует из названия, крепится на связку ключей. Предназначен такой фонарик для использования на сверхблизких дистанциях - например, чтобы посветить себе под ноги или найти в темноте замочную скважину. Для этих целей вполне достаточно одного режима работы с интенсивностью свечения в 3-5 люмен (это, конечно, не означает, что ярче нельзя). Для таких фонарей основные требования - легкость и компактность, поэтому здесь обычно используются простой 5-мм светодиод и литиевые батарейки в виде тонких дисков (так называемые «таблетки»), а корпус самого фонарика изготавливается из пластика. В последнее время хорошей альтернативой таким фонарям выступают изделия традиционной цилиндрической формы, но совсем небольшие и легкие, использующие для работы батарейки/аккумуляторы типоразмера ААА (в просторечии - «мизинчики»). Корпус таких фонарей, как и у более «взрослых» собратьев, изготавливают из алюминия с защитным анодированием высокой твердости, реже - из полированной нержавеющей стали и титановых сплавов. Часто они имеют современный мощный светодиод и несколько режимов работы, а также полноценную защиту от влаги. Управление режимами работы у таких фонарей, как правило, осуществляется вращением «головы», а не кнопкой, так как последняя заметно увеличивает габариты фонаря - а «наключнику», как резервному, «на всякий случай», фонарю, это совершенно ни к чему. Пример отличного «наключника» - Olight i3S EOS (см.).

Выбор фонаря в первую очередь определяется его будущим назначением

Фонари EDC (Every Day Carry - англ. «повседневное ношение») - одна из самых популярных категорий с большим разнообразием выбора. Здесь есть как простейшие дешевые однорежимные, так и брендовые, дорогие и многорежимные устройства. Как правило, фонари данной категории весьма компактны, часто оснащены клипсой для крепления на кармане или поясе. Используются такие фонари преимущественно в городе, варианты применения их очень разнообразны, поскольку они уже способны обеспечивать достаточно приличную яркость светового потока. Многорежимные фонари хороши тем, что на минимальном режиме яркости ими удобно светить под ноги, а максимального свечения будет вполне достаточно, чтобы осветить дорогу на несколько десятков метров вперед. Мощность таких фонарей варьируется в среднем от 3-10 люмен в минимальном режиме, а максимальная яркость свечения будет зависеть от используемых элементов питания и светодиода. Обычно такие фонари на одной пальчиковой батарейке выдают максимум около 120-150 люмен - на литиевых же элементах питания обычно в два-три, а иногда и в четыре раза больше. Кроме того, в таких фонарях часто дополнительно предусмотрены режимы мигания - точнее, режим SOS (световые импульсы низкой частоты) и режим стробоскопа (высокочастотное мигание - подходящее, например, для оборонительного ослепления агрессивно настроенного человека, злой собаки или внезапно нагрянувшего налогового инспектора).
Самое популярное питание EDC-фонарей - батарейки/аккумуляторы АА, продающиеся чуть ли не на каждом углу; также есть варианты на литиевых батарейках/аккумуляторах: CR123A, 16340, 14500, реже - на 18650 или двух элементах CR123A.

Компактные фонари EDC + «наключник»

Для EDC-фонарей материалом корпуса обычно является алюминиевый сплав с анодированием высокой твердости. Благодаря этому фонарь имеет достаточный запас прочности для большинства условий применения, а твердое анодирование хорошо защищает его от потертостей и царапин. Кроме алюминия, используют также нержавеющую сталь и титановые сплавы - правда, теплопрово дность у этих материалов ниже, поэтому на максимальных режимах лучше такие фонари часто не использовать. Зато вид у полированной «нержавейки» или титана очень солидный, а последний еще и практически так же легок, как алюминий, хотя и заметно дороже. Форма светового пятна для EDC-использования желательна с широким «хотспотом» (центральным ярким пятном) - так будет значительно удобней высвечивать объекты на близких дистанциях, для которых такие фонари и предназначены.
Отличным примером EDC-фонариков является серия Baton от Olight: S10, S15 и S20 (см. –).

Надев такой светорассеиватель на «голову» ручного фонаря, можно получить неплохую замену кемпинговому

Туристические фонари - также популярная разновидность осветительных приборов, во многом схожая с предыдущей; но здесь уже очень желательна повышенная яркость - а также, и это важно, увеличенная емкость элементов питания. В фонарях для туризма обязательно должны быть несколько режимов работы, благодаря которым можно будет легко осветить и лесную тропинку, и столик в кемпинге, и интерьер палатки. Для пешего или велосипедного туризма важным моментом, на который стоит обратить внимание, является баланс между энергоемкостью источника питания и его массой, поэтому лучшим вариантом для туристического фонаря будет питание от 2-3 литиевых одноразовых батареек AА (можно и щелочных АА, но литиевые легче) - либо от одного качественного аккумулятора 18650 с высокой емкостью. Применение батареек типоразмеров D и С для пешего туризма весьма сомнительно ввиду плохого соотношения «масса/энергоемкость». Фонари на 4-8 батареек АА или 2-3 аккумулятора 18650, конечно, тоже могут подходить для туристических целей - но, как правило, проще взять дополнительный комплект питания для более скромного фонаря. Световое пятно в туристических фонарях, как и в EDC, предпочтительно широкое - за счет увеличенной мощности такой фонарик будет легко высвечивать и достаточно удаленные объекты. Также нелишним при выборе туристического фонаря будет обратить внимание на защищенность - особенно влагоустойчивость. Защищенность фонаря описывается по международной спецификации IPxx, где первая из цифр «XX» показывает уровень защищенности от попадания посторонних предметов (как правило - пыли), а вторая - уровень защищенности от влаги. Максимальная защита соответствует индексу IP68 - это идеал для туристического фонаря; впрочем, вполне достаточно будет и IP67, а вот меньше - уже нежелательно. Для фонарей туристического типа производители выпускают разнообразные аксессуары, благодаря которым можно существенно расширить спектр возможностей вашего фонаря. Например, существуют насадки-диффузоры, рассеивающие свет - благодаря чему вместо свечения узким лучом на близких дистанциях фонарь будет освещать пространство вокруг себя подобно обычной электрической лампочке или свече.

Универсальные (туристические) фонари

Пример удачных моделей фонарей, которые, можно с уверенностью использовать для для туристических целей:
- Olight ST25 ;
- Olight R20 и R40 - отлично подходит для туризма, поскольку оснащен портом microUSB для зарядки от внешних источников: «пауэрбанка», солнечных батарей или автомобильного прикуривателя (см. и).
Также для туризма вполне подойдет и Olight S20 серии Baton (см.).

Тактические/охотничьи фонари разработаны специально для использования в условиях боевых действий, чаще всего - совместно с оружием. Есть фонари, рассчитанные на установку только на короткоствольное оружие (пистолеты и револьверы), а есть варианты для длинноствольного оружия (ружья и винтовки). Такие фонари используют для подсветки цели, а также для ослепления и дезориентации противника.
При использовании по назначению специализированному тактическому фонарю приходится выдерживать немалые испытания - это и отдача при выстреле, и разнообразные удары, вибрации и т.п.; поэтому такие фонари должны обладать повышенной прочностью корпуса и резьбовых соединений, а также более надежной «начинкой». Корпуса «тактиков» изготавливают из алюминиевых сплавов, реже - из стали и специальных композитных материалов. В качестве светоизлучателей раньше применялись лампы накаливания, которые сейчас практически полностью уступили место мощным светодиодам. Современные светодиоды создают световой поток яркостью в несколько сотен люмен, благодаря чему возможно эффективно освещать цели на расстоянии в сотни метров. Луч «тактика», как правило, весьма узок - и сделано это для того, чтобы избежать ослепления владельца фонаря отражением света от близкора сположенных предметов, попадающих в световой «конус». Тактический фонарь обычно обладает кнопкой прямого включения - фонарь начинает светить до фиксации кнопки во включенном положении, благодаря чему можно очень быстро включить и выключить фонарь, а также подать сигнал «морганием». Помимо этого, на «тактик» может монтироваться выносная кнопка для дистанционного включения, позволяющая оперативно управлять фонарем, установленным на оружие: благодаря наличию такой кнопки стрелок не отвлекается от наблюдения за целью.
Часто на тактические фонари устанавливают стальной безель в виде зубчатого кольца, благодаря чему фонарь можно использовать в качестве ударного инструмента - например, для разбивания оконных или автомобильных стекол - а также оружия ударно-дробящего действия без риска его повредить.
Изначально в тактических фонарях обычно использовалась пара относительно емких, но довольно дорогих и одноразовых батареек CR123А, но благодаря распространению аккумуляторов типоразмера 18650 разработчики «тактиков» в качестве основного питания стали использовать именно их. В виде редких исключений встречаются тактические фонари на АА- и даже ААА-батарейках.

Примеры отличных тактических фонарей от компании Olight: M18 Striker, M20SX-L2 Warrior, M21X-L2 Warrior, M22 Warrior, M3X Triton
(см. 10–15).

Фонари поисковые - как правило, довольно крупные и увесистые, с небольшим временем свечения, но при этом с очень высокой яркостью. В основном, такие бывают двух видов: светящие относительно недалеко, но широким лучом и, наоборот, дальнобойные с узким лучом света (эффективная дальность освещения у последних может достигать километра и более). Для питания светодиода здесь обычно применяются либо несколько аккумуляторов типа 18650/26650/36650, либо специальные неразборные аккумуляторные блоки. Обычно такие фонари используются в профессиональных видах деятельности - например, спасателями, егерями или военными - поэтому они отвечают самым жестким требованиям по надежности изделия и его защищенности. Примеры таких фонарей от компании Olight: SR Mini Intimidator, SR52 Intimidator, SR95S UT Intimidator, SR96 Intimidator, X6 Marauder (см. 17–20, 23).

Поисковые фонари

Налобник Olight H15S Wave интересен, в первую очередь, возможностью включения и выключения «без рук» - за счет специальной сенсорной системы

Налобные фонари по аналогии с телефонными гарнитурами еще иногда называют HandsFree, поскольку при работе руки владельца остаются свободными. Такой тип фонарей хорошо подходит для очень многих областей использования - в том числе и как вспомогательный фонарик «ближнего боя» к основному «бластеру».
Один из наиболее важных параметров налобного фонаря - это его масса, поэтому обычно такие фонари делают из легкого алюминиевого сплава, часто в сочетании с полимерами или композитными материалами. Бывают, конечно, налобники, и целиком изготовленные из пластика - но это, как правило, наиболее дешевые модели; такие бюджетные изделия, как правило, обладают серьезными недостатками - это либо слишком малая яркость свечения, либо вызываемый работой мощного источника света сильный нагрев (которого не удается избежать из-за проблем с охлаждением у пластикового корпуса), вследствие чего фонарь быстро выходит из строя. Оптимальным питанием для небольшого и легкого налобного фонаря являются батарейки/аккумуляторы типоразмеров AA и AAA, а также CR123А. Если же нужен фонарик мощнее или с большим запасом энергии, то придется пожертвовать удобством ношения, поскольку использование элемента питания 18650 или нескольких АА (реже ААА/CR123А) приводит к увеличению размеров и массы фонаря, а это делает его использование менее удобным. Тем не менее, комплексная задача удобства для пользователя и наличия большого запаса энергии решается - для этого выпускают налобные фонари с раздельными блоками; излучатель такого фонаря крепится традиционно, на лбу, а батарейный блок располагается на затылке - тем самым обеспечиваются равномерное распределение массы и комфортность работы с фонарем.
Типичная мощность светового потока налобных фонарей составляет 30-150 люмен. Также существуют модели с яркостью в несколько сотен люмен и более - но они уже достаточно увесисты (от 100 г без батарей - а с отдельным батарейным блоком еще больше). Форма луча «налобников» может быть разной и выбирается под конкретные задачи: если необходимо светить преимущественно на близкие дистанции, то желателен луч пошире (возможно вообще использование равномерного заливаюшего света), а если фонарь предстоит использовать вместо ручного для освещения средних и дальних дистанций, то здесь пригодится узкий луч.

Налобные фонари

Варианты хороших налобников от компании Olight:
H15S Wave - питается от оригинального аккумулятора Li-Ion или от 4хААА, а за счет штатного светорассеивателя может создавать как узкий луч, так и широкий (см. 21);
H25 Wave - питается от выносного аккумуляторного блока, который можно положить в карман/рюкзак или разместить на поясе под одежду (что особо актуально при использовании фонаря в мороз). Также особенностью фонаря является бесконтактное включение/выключение и встроенный в аккумуляторный блок «пауэрбанк», который придется очень кстати в случае необходимости подзарядить, например, мобильный телефон (см. 22).

Фонари подводные, или «дайверские» , используются пловцами при погружениях (дайвинге) на значительную глубину днем или ночью, а также при подводной охоте. Основные требования к таким фонарям - полная водонепроницаемость и достаточно высокая яркость свечения. Управление в таких фонарях производится чаще всего крупным рычагом/кнопкой или магнитным кольцом, что обеспечивает легкость включения фонаря и переключения режимов его работы даже в перчатках для подводного плавания. Питание - емкие литиевые аккумуляторы типоразмеров 18650, 26650, 36650, также часто используются встроенные аккумуляторы, а иногда - и несколько батарей АА. Важно помнить, что подводный фонарь - особенно высокой мощности - нежелательно использовать в максимальном режиме свечения на воздухе, поскольку конструкция подобных фонарей рассчитана на нормальное охлаждение только в воде; на воздухе же подводный фонарь может перегреться и выйти из строя.

Zexus ZX-500: 300/150 лм, время работы 72 ч/144 ч, питание 3хD, габариты 100х180х85 мм, масса 420 г

Как следует из названия, предназначены для освещения кемпинга или любого другого широкого пространства. Чаще всего кемпинговые фонари освещают все вокруг себя заливающим светом - по принципу свечи или электролампочки - но бывают и варианты с пусть широким, но направленным светом. Главным критерием при выборе кемпингового фонаря в большинстве случаев является совсем не яркость свечения, а время его работы на одном комплекте элементов питания. Полезно также, чтобы такой фонарь имел несколько режимов работы - в том числе и режим подачи сигнала бедствия SOS. Вдобавок для кемпингового фонаря, как и для ручного туристического, крайне важны массогабаритные характеристики - фонарь на 3-4 батареях типоразмера D вряд ли будет удобно носить в походе, а вот фонарь на 3-4 батарейках АА (ААА) или одном аккумуляторе 18650 - вполне. Питание на батареях D или С подойдет для стационарного варианта использования - или же для автотуризма. Материал корпуса кемпинговых фонарей - обычно пластик, металл используется реже. Бывают кемпинговые фонари со встроенными зарядными устройствами - механическими (нужно крутить ручку, как у старых грузовиков) или на солнечных батареях (в этом случае нужен прямой солнечный свет) - с помощью которых можно подзарядить севший аккумулятор. Примеры: Zexus ZX-500 (см.).
Фонари с регулируемым фокусом (zoom), они же «линзовики» - cпециально выделены в отдельную категорию, поскольку пользуются определенной популярностью в сверхбюджетном классе, но из-за особенностей конструкции не являются лучшим вариантом для покупки. В основе конструкции таких фонарей лежит схема с изменяемым расстоянием между линзой (обычно асферической) и светодиодом, благодаря чему можно получить луч как в виде очень широкого светового конуса для ближних дистанций, так и очень узкий и дальнобойный луч (причем - без боковой засветки). У подобных фонарей есть как достоинства, так и недостатки - причем последних немало. Конструкции с подвижной «головой» обычно слабо защищены от влаги, пыли и песка, к тому же подвижная головная часть с линзой со временем может «разболтаться» и перестать фиксироваться в нужном положении. В свою очередь, конструкции с подвижным светодиодом (перемещаемым внутри неподвижного корпуса) плоха тем, что со временем в них отламываются провода между платой управления и диодом; вдобавок у этих фонарей обычно недостаточный теплоотвод, что тоже не добавляет фонарю надежности. Весомым недостатком является еще и то, что на длинном фокусе теряется до 50% света. Конечно, есть и брендовые линзовые фонари, которые сделаны значительно качественнее бюджетных - однако принципиальные особенности изменяемой фокусировки у них сохраняются. Есть, конечно, у «линзовиков» и достоинства - это гибкость применения; иногда бывает полезно иметь возможность переключения с узкого луча, применяемого для освещения затемненных пространств большой глубины (вроде тоннелей или колодцев), на широкий заливной свет, который пригодится, например, для хозяйственной деятельности на привале.




II. Характеристики и показатели, определяющие уровень фонаря

Самые популярные линзовые «сверхбюджетники»

На рынке присутствует огромное количество разнообразных фонариков - и когда возникает желание купить хороший фонарь для конкретной цели (или на все случаи жизни), задаешься вопросом «А какой из них хороший?» Хочется ведь, чтобы фонарь ни в коем случае не подвел, когда дойдет до дела. Итак, если нужно купить действительно хороший фонарь - он должен быть брендовым. Известные компании-производители фонарей очень дорожат своим имиджем, поэтому обычно несут полную ответственность за свой товар, четко соблюдая гарантийные обязательства и зачастую даже обеспечивая послегарантийное обслуживание. Кроме того, в брендовых фонарях обычно имеется огромное разнообразие вариантов управления и режимов работы, поэтому в использовании такие фонари значительно приятнее и комфортнее. Небрендовые фонари подкупают, в основном, своей ценой - правда, при этом покупатель неизбежно получает кота в мешке. Использование фонаря неизвестного происхождения может выя вить целую кучу проблем и недостатков - это и некачественные материалы, и плохая резьба, и слабый теплоотвод, и отсутствие влагозащищенности, и неприятный «синюшный» спектр свечения, халтурная пайка электроники и пр. Кроме того, показатели яркости свечения и дальнобойности луча у небрендовых фонарей, как правило, серьезно завышены - часто в разы, а то и на порядки. Подобный «маркетинг» рассчитан, в первую очередь, на неосведомленных покупателей, вдобавок обладающих слабым зрением, чтобы лишние нолики, приписанные к характеристикам, не вызывали подозрений. Клепают небрендовую продукцию - какая бы там Германия, Швейцария или Америка ни значилась на этикетках - преимущественно в Китае. Собственно китайское происхождение уже не является однозначным синонимом низкого качества - многие серьезные американские и европейские производители уже достаточно давно либо используют изготовленные в Поднебесной комплектующие, либо и вовсе перенесли производство в Китай; вдобавок и многие китайские компании уже добились признания высокого качества своей продукции на мировом рынке - и фонари тут не исключение. Однако существует принципиальная разница между продукцией специализированного завода, оснащенного современнейшим оборудованием со строгим контролем качества и укомплектованного хорошо обученным и ответственным персоналом - и продукцией какой-нибудь гаражно-подвальной мастерской, работники которой техническое образование получили, разбирая краденые мопеды, а для стимуляции полета мысли дизайнеров используется исключительно гаоляновый самогон. Тем не менее, персоналу последних предприятий тоже нужно кормить семьи - именно этим и объясняется такое обилие в продаже фонарей неизвестных марок и происхождения, качество изготовления которых «гуляет» не только от названия к названию, но даже и от экземпляра к экземпляру у одноименных изделий. Понятно, что приобретение такого фонаря - чистой воды лотерея. Отсюда вывод: если фонарик нужен крайне редко (например, чтобы спуститься в погреб за картошкой или найти распределительный щиток, когда внезапно пропал свет), то, возможно, хватит и небрендового фонаря - лишь бы он не был самым дешевым. Если же фонарь планируется использовать для мало-мальски серьезных дел - например, походов в местах, удаленных от цивилизации, исследования каких-нибудь заброшенных уголков, спелеологии, дайвинга, охоты, поисково-спасательных или военных операций, где от качества и надежности работы фонаря может зависеть и жизнь, и здоровье владельца и близких ему людей, выбирать нужно только брендовое изделие, свою цену оно окупит с лихвой.

Тип источника света - все о светодиодах

Еще в 1920-х годах советский физик Олег Лосев, исследуя явление электролюминесценции, предсказал появление твердотельных, то есть не нуждающихся в вакууме, и малогабаритных источников света с очень низким (в пределах 10 вольт) напряжением питания, а позднее получил два авторских свидетельства на устройство, названное им «световым реле» - вот что такое светодиод . Однако слабое развитие полупроводниковых технологий привело к тому, что в течение долгого времени светодиоды использовались только в качестве индикаторов - светящихся точек различных цветов. В последние же годы произошла настоящая революция в этой области, которая привела к созданию сверхъярких светодиодов. До их появления источником света фонарей являлись лампочки с нитью накаливания, но в настоящее время светодиоды вытеснили их практически полностью. Дело в том, что у ламп есть весьма существенные минусы по сравнению со светодиодами: это, в первую очередь малый ресурс работы (особенно в ситуациях, связанных с экстремальными условиями, частыми вибрациями, ударами), а также малая эффективность - при одинаковом потреблении электрического тока лампа светит значительно слабее светодиода. Правда, есть у ламп и плюсы; одним из наиболее значительных является правильный температурный спектр - благодаря чему цвета предметов, освещаемых такой лампой, в отличие от светодиодного освещения не искажаются. Еще один плюс ламп накаливания - отсутствие дополнительной электроники, которая потенциально может выйти из строя и подвести владельца фонаря в самый неподходящий момент; хотя, конечно, в высококачественных фонарях вероятность этого сведена к минимуму.

Типы и разновидности светодиодов


Производители светодиодов, как и любой электроники, постоянно усовершенствуют свою продукцию, благодаря чему на рынке фонарей можно встретить разные типы светодиодов, в которых простому пользователю достаточно сложно разобраться. Наиболее популярны светодиоды американской компании Cree Inc.: XR-E, XP-E, XP-G, XM-L, а также более новые XP-E2, XP-G2, XM-L2 - эти светодиоды чаще всего ставят в некрупные фонари (кроме XM-L и XM-L2, которые являются весьма универсальными и подходят как для компактных EDC-фонарей, так и для мощных поисковиков). Светодиоды Cree MT-G2 и MK-R, а также светодиоды SST-50, SST-90, SBT-70 и SBT-90 от компании Luminus, как правило, используются в больших и мощных поисковых фонарях, работающих от нескольких аккумуляторов. Кроме того, светодиоды различаются по яркостным бинам - специальным кодам системы сортировки светодиодов по яркости. У светодиодов Cree имеет цифробуквенное обозначение; для диодов XM-L(2) наиболее распространены бины T5, T6, U2, для диодов XP-G(2) - R4, R5, S2, для диодов XP-E(2) - Q5, R2, R3, для диодов XR-E - P4, Q3, Q5, R2.
Поэтому если производитель или продавец указывает, что «фонарь на диоде T6» - он имеет в виду диод XM-L T6.

виды светодиодов для фонарей, яркость

Если распределять популярные по условной шкале яркости, по мере возрастания, выглядеть это будет так: P4-Q3-Q5-R2-R4-R5-S2-T5-T6-U2.
Одно из основных отличий диодов друг от друга - их размеры, а точнее, площадь светоизлучающего кристалла. Чем меньше площадь кристалла, тем проще сфокусировать его свечение в узкий луч - и наоборот. Поэтому старенький светодиод XR-E сфокусировать проще всего, а достаточно крупный XM-L при тех же условиях будет светить значительно шире. Если же от светодиода XM-L необходимо получить максимально узкий луч, придется использовать довольно крупный, широкий и глубокий отражатель, что негативно скажется на массе и габаритах корпуса. А вот с маленьким отражателем на таком светодиоде получится очень удачный карманный фонарик с широким ближним светом.

Соотношение цена-качество

При выборе фонаря, естественно, следует читать описание светодиодов и учитывать яркость его свечения. Измеряется она в люменах - чем больше люмен в световом потоке фонаря, тем ярче он светит и, соответственно, тем быстрее «съедает» запас энергии элементов питания. При сравнении брендовых фонарей можно более-менее уверенно отталкиваться от значений их яркости свечения, заявленных производителями; однако далеко не всегда все так идеально. Прежде некоторые производители несколько лукавили при подсчетах люменов в своих фонарях, часто не учитывая потерь света в оптической системе при разных температурных режимах и т.п., в результате чего декларируемые характеристики оказывались несколько завышенными. Сейчас для уравнения характеристик фонарей разных брендов используется специальный единый стандарт, определяющий методы измерения яркости и дальнобойности (ANSI FL1) - и если измерения характеристик производились согласно стандарту ANSI, то это будет указано на упаковке. Часто имеет место своего рода «военная хитрость»: спустя некоторое время после начала работы на максимальной мощности яркость свечения фонаря автоматически снижается. Называется это Step Down (англ. «на ступень ниже»); подобный алгоритм работы часто служит лишь для того, чтобы обеспечить производителю возможность указать на упаковке максимально возможное значение яркости. Однако в некоторых случаях «степдаун» действительно полезен - благодаря ему элементы питания не садятся так быстро, как могли бы, работай фонарь постоянно на максимуме. Также бывает, что изделие с более сфокусированным лучом, но меньшей яркости по стандарту ANSI может обставить по дальнобойности более мощный фонарь с более широким лучом - тут уже играют роль оптическая система и используемый светодиод. Одним словом, брендовые фонари можно смело выбирать и сравнивать по яркости свечения, указанной производителем, если она измерялась по стандарту ANSI - но желательно еще и учитывать особенности оптической системы фонаря, а также наличие «степдауна» в некоторых моделях.

Рефлектор/линза асферическая/TIR-линза - все эти устройства нужны для фокусировки света, излучаемого светодиодом; проще говоря, они формируют световой луч.
Рефлектор - оптимальный вариант. Благодаря ему получаются яркое центральное пятно и заметная боковая засветка. Такая структура света очень удобна для ориентирования в освещаемом пространстве - как на близких, так и на дальних дистанциях. Кроме того, рефлектор может быть гладким либо текстурированным (с внутренней поверхностью, имеющей вид апельсиновой корки). За счет гладкого рефлектора фонарь будет дальше светить, поэтому такой вариант полезен для дальнобойных фонарей, а у текстурированного есть другое достоинство - благодаря ему переход от центрального пятна к боковой засветке происходит более плавно, поэтому такая форма света более удобна для близких дистанций, что важно для фонарей EDC.
Асферическая линза в фонарях с изменяемым фокусом создает свет от широкого заливающего до очень узкого и довольно дальнобойного луча. Как описывалось выше, такие фонари достаточно узкоспециализированы и для комфортного использования в разных жизненных ситуациях не очень удобны.
Особенность TIR-линзы (Total Internal Reflection - англ. «полное внутреннее отражение) состоит в том, что в отличие от рефлектора TIR-линза собирает весь свет от светодиода в один пучок заранее определенной ширины, практически не давая боковой засветки. Таким способом можно получить очень узкий и дальнобойный луч, необходимый для поисковых или тактических фонарей, или же, наоборот, очень широкий луч, хорошо подходящий для туристических, налобных или EDC-фонарей.

Применение светодиодов

Часто потребитель, выбирая фонарь, хочет от него максимальной дальности свечения - однако в большинстве случаев дальнобойные фонари вовсе и не нужны. Чаще всего фонарь используется для освещения близлежащей местности или объектов, находящихся на удалении не более нескольких десятков метров. Дальнобойные же фонари светят на сотню метров и дальше - правда, часто весьма узким лучом, который плохо освещает окружающее пространство, особенно на близких расстояниях. В результате, освещая таким фонарем удаленные объекты, пользователь не сможет разглядеть то, что находится в непосредственной близости от него - образно говоря, под ногами. Конечно, фонарь можно периодически перемещать, водя им из стороны в сторону и вверх-вниз - но куда проще в таких случаях воспользоваться фонариком с меньшей дальнобойностью, но обладающим широким лучом, который прекрасно сможет одновременно осветить все, что нужно. Так что, зная совершенно очевидно, что дальнобойные фонари, незаменимые для спасателей, охотников или военных, в повседневном использовании для бытовых задач не особо и полезны.

На фото видно сравнение тональности освещения, которое дают светодиоды трех разных спектров: «теплого», «нейтрального» и «холодного». При выборе температуры света фонаря нужно ориентироваться на такие моменты: светодиод с теплым спектром свечения в минимальной степени искажает цвета освещаемого объекта, но имеет меньшую яркость, чем светодиод нейтрального спектра - и тем более «холодный» светодиод. У последнего же все наоборот. Поэтому если нужен мощный поисковый или тактический фонарь, где важнее яркость, то лучше выбирать светодиоды с холодным спектром свечения. Если же фонарь нужен для бытовых задач, туризма либо для использования в варианте налобного фонарика, то здесь все же важнее правильная цветопередача - и, следовательно, светодиод с теплым спектром свечения будет выигрышнее. Нейтральные же светодиоды - золотая середина как по правдивости цветопередачи, так и по яркости света.

Сравнение «теплого», «нейтрального» и «холодного» света. Первый меньше искажает цвета, последний - контрастнее и мощнее, «нейтральный» - золотая середина

Обыкновенная пальчиковая батарейка АА с номинальным напряжением 1,5 вольта при большом токе потребления не сможет выдавать положенное напряжение и будет «проседать», плюс напряжение по мере разряда будет быстро снижаться - а следовательно, яркость свечения фонарика на таком элементе питания будет так же быстро падать. Для того чтобы яркость не снижалась попутно с разрядом батареи, современные фонари оснащают специальными электронными стабилизаторами питания. Фонарь с таким стабилизатором будет поддерживать режим яркости до последнего; а когда напряжение батареи упадет ниже определенного порогового уровня, автоматика просто переключит фонарь на более слабый режим - которого фонарь так же стабильно и упорно будет придерживаться, пока батарейка не сядет окончательно.

Не считая самых дешевых фонарей, имеющих только кнопку включения/выключения, у большинства современных, пусть даже небрендовых, фонарей предусмотрено несколько режимов работы, включая стробоскоп (высокочастотное мигание) и SOS (сигнал бедствия). У небрендовых изделий режимов работы обычно три (максимальная мощность/средняя мощность/стробоскоп) либо пять (минимальная мощность/средняя мощность/максимальная мощность/стробоскоп/SOS); при этом средняя мощность обычно соответствует 50% максимальной яркости свечения, а минимальная - 10% (бывает, конечно, и иначе). В брендовых же фонарях все значительно сложнее. Здесь управление режимами работы может осуществляться кнопками (обычными механическими или электронными), вращением «головы», поворотом магнитного кольца, а также комбинацией вышеперечисленного. У некоторых фонарей «на борту» есть разнообразные датчики для включения/выключения или смены режимов - например, датчик движения, позволяющий переключать режимы легким встряхиванием фонаря, или инфракрасный сенсор, включающий/выключающий налобный фонарь при взмахе рукой перед ним без каких-либо нажатий на кнопки. Для того чтобы определиться с предпочтениями, потенциальному пользователю лучше всего самостоятельно попробовать управление тем или иным способом, поскольку каждый из них имеет свои особенности - которые на практике могут привести, например, к тому, что для управления вашим фонарем вам понадобятся обе руки. Если это некритично, то можно выбирать, что больше понравится. Режимов работы у брендовых фонарей также множество. Здесь стоит упомянуть о фонарях с возможностью плавного, бесступенчатого изменения яркости или самостоятельного программирования режимов работы. С одной стороны, это удобно тем, что можно идеально подстроить режим свечения под конкретную ситуацию. С другой же стороны, зная о времени работы от одного комплекта элементов питания при каждом из фиксированных режимов, можно достаточно точно рассчитать необходимое количество элементов питания, которые вам стоит держать про запас для той или иной задачи - в фонарях же с плавной регулировкой подобные расчеты можно произвести только в режиме максимальной или минимальной яркости свечения.

Обыкновенный алюминиевый рефлектор (отражатель), TIR-линза, асферическая линза (для фонарей с изменяемой шириной луча)

Основным (и наилучшим) материалом для изготовления современных мощных фонарей являются алюминиевые сплавы, наиболее важные достоинства которых - легкость, достаточная прочность, отличная теплопроводность и относительная дешевизна. Также благодаря защитным анодным покрытиям, твердым и износостойким, фонари с корпусом из алюминиевых сплавов довольно тяжело поцарапать. Сталь также используют в производстве корпусов для фонарей, но значительно реже - поскольку фонарь при этом становится тяжелее, а светодиод вследствие более низкой теплопроводности стали при работе гораздо хуже охлаждается, из-за чего может просто выйти из строя. Однако если вам не нужна большая яркость свечения, то фонарь в стальном полированном корпусе будет прекрасным имиджевым аксессуаром. Достаточно часто встречаются также фонари из титановых сплавов (обычно - с полированной поверхностью корпуса, но иногда и матовые). Эти фонари не уступают стальным ни прочностью, ни стильной внешностью - но при этом несколько легче, а также обычно значительно дороже. Пластик же в конструкции фонарей используется, как правило, в качестве дополнения к алюминию - либо для корпусов фонарей малой мощности, вроде кемпинговых или простеньких налобных.

Современные фонари имеют довольно прочный, чаще всего металлический, корпус, защищающий стекло и электронику от внешних механических воздействий. Однако, даже приобретя брендовый фонарь, не стоит бездумно испытывать его на прочность, швыряя с крыши на бетон - для подобного он все же не предназначен. Если же выбирать фонарь по максимальной защищенности от ударов и вибраций, то это однозначно будет тактический фонарь, предназначенный для установки на оружие и спокойно выдерживающий динамические нагрузки, возникающие при выстреле. Высокая влагозащищенность уровня IPx7/IPx8 - когда фонарь смело можно окунать в воду - присутствует практически во всех брендовых фонарях, даже достаточно бюджетных. Исключения, как правило, составляют бюджетные фонарики, фонари с изменяемым фокусом, кемпинговые фонари и некоторые налобные, которые безопасно переживут разве что средний дождь.

В отличие от батареек с выходным напряжением 1,5 В, аккумуляторы NiMh (никель-металлгидридные) выдают номинальное напряжение 1,2 В - поэтому некоторые фонари с ними могут работать некорректно. Однако качественные NiMH-аккумуляторы, в отличие от батареек, обычно позволяют брендовым фонарикам светить на все свои заявленные производителем люмены.
Такую батарейку часто называют «мизинчиковой» или «мини-пальчиковой». Фонари на подобной батарейке очень маленькие и легкие - масса их может составлять всего 10-30 г. Максимальная яркость - около 60-80 люмен, что уже позволяет неплохо светить на десяток-другой метров; правда, при такой яркости батарейки ААА хватит ненадолго, минут на 30-40 - поэтому используются такие фонари обычно в качестве запасных «на всякий случай».
«Пальчиковая» батарейка - самый популярный вид элементов питания, который можно купить чуть ли не на каждом углу. Емкость ее в 2-2,5 раза выше, чем у «мизинчиковой», поэтому фонари на АА-батарейках будут светить дольше - причем при более высокой яркости (90-120 лм). Брендовые фонари при использовании качественных элементов питания выдают около 140-160 люмен и более на хорошем NiMH-аккумуляторе. Габариты фонарей на АА-батарейках заметно больше, чем ААА-фонарей - на связку ключей повесить уже получится не всегда - но они все еще остаются достаточно компактными (масса - в пределах 50-80 г, длина - не более 8-10 см).

Сравнение габаритов популярных литиевых аккумуляторов (слева направо): 10440 (АА), 15270 (CR2), RCR123A, 16340, 14500 (AA), 18650

Фонарики на двух «мизинчиковых» батарейках достаточно редки - как правило, это брендовые фонари, выполненные в виде стильной ручки во множественных вариантах расцветки. Яркость их составляет обычно 150-200 люмен - правда, работают они при такой яркости недолго. Однако за счет очень маленького рефлектора такие фонарики дают широкий луч, очень удобный для ближнего освещения.

В таких фонарях батарейки устанавливаются последовательно друг за другом, в результате чего получается достаточно длинный (около 15 см) и тонкий фонарик. По сравнению с одной батарейкой здесь в запасе имеется уже вдвое больше энергии, поэтому яркость свечения таких фонарей также увеличена - и доходит до 250 люмен и более; для экономии энергии, впрочем, всегда можно перейти в более экономный режим. В целом, фонари на двух АА-батарейках являются самыми универсальными с точки зрения распространенности элементов питания, габаритов, массы и яркости свечения.
Один из самых популярных видов питания - как у большинства небрендовых и особо бюджетных фонарей, так и у некоторых брендовых (в настоящее время, правда, уже конструктивно устаревших). Основной недостаток такого типа питания - при достаточно больших массе и габаритах общая энергоемкость все же довольно невелика; к тому же, как правило, у таких фонарей отсутствует стабилизация яркости свечения по мере разряда батареек.
и Фонари на нескольких пальчиковых батарейках встречаются самые разнообразные - от туристических и просто универсальных (на 3-4 батарейки АА) до дальнобойных поисковых и подводных (на 8 АА-батареек). Характеристики таких фонарей обычно сходны с данными мощных фонарей на литиевых аккумуляторах - но имеют преимущества там, где проще достать пальчиковые батарейки/аккумуляторы, или теми пользователями, кому элементы питания этого типоразмера предпочтительнее (например, если зарядное устройство с комплектами запасных АА-аккумуляторов уже есть, а покупать отдельное зарядное устройство для литиевых элементов и сами такие аккумуляторы совершенно не хочется).
В настоящее время брендовые фонари, использующие такой тип элементов питания, уже практически не встречаются. Исключение составляют разве что очень популярные в свое время, но уже устаревшие фонари-дубинки американской фирмы Maglite.
Данный тип элементов питания несколько более популярен, чем предыдущий, и, помимо фонарей-дубинок Maglite, используется также в некоторых моделях у брендового производителя Fenix; хотя, конечно, широким распространением это не назовешь. Чаще всего D-батарейки сейчас используются в больших кепминговых фонарях - как правило, в количестве 3-4 штук одновременно.

Две одноразовые батарейки в виде тонких дисков диаметром около 2 см используются в сверхкомпактных фонарях-брелоках - имеющих, как правило, пластиковый корпус и оснащенных простым 5-мм светодиодом. Такие фонарики отличаются очень малыми габаритами и массой - но и свет тоже дают довольно слабый слабый (впрочем, его более чем достаточно, если нужно подсветить замочную скважину или не промахнуться мимо ступенек в темном подъезде). Для фонарика «на всякий случай» такого комплекта питания - выше крыши.
Этот аккумулятор сходен габаритами с ААА-батарейкой - вследствие чего некоторые «наключники», штатно работающие на батарейках ААА, могут питаться и от такого аккумулятора. Яркость при этом увеличивается в 2-3 раза, однако время работы в максимальном режиме существенно уменьшается - буквально до десятка минут. Есть еще один серьезный недостаток - маленький фонарик при таком увеличении яркости свечения очень быстро разогревается и может выйти из строя. Поэтому фонарь с таким аккумулятором лучше на максимуме не использовать. Емкость аккумулятора 10440 составляет около 300 мА·ч, напряжение - 3,7 (3,6) В.
Фонари на этих одноразовых батарейках встречаются весьма редко - но вариант для «наключника» очень интересный. Элемент CR2 почти в 2 раза короче 10440, но зато в полтора раза толще. Напряжение - 3,0 В, емкость - около 800 мА·ч. Вместо одноразовых батареек CR2 можно использовать аккумулятор типоразмера 15270 с напряжением 3,0 В и емкостью около 200 мА·ч.

Olight SR95S-UT Intimidator: Luminus SBT-70, 1250/500/150 лм, время работы 3 ч/8 ч/ 48 ч, дальность 1000 м, питание – специальный аккумуляторный блок, габариты 325х90 мм, масса 1230 г

Одноразовая литиевая батарейка с напряжением 3 вольта - компактный и легкий элемент питания, при этом имеющий весьма приличную емкость (около 1500 мА·ч), за счет чего фонари на данном элементе питания довольно популярны. Такие фонари очень хорошо подходят для EDC-использования, поскольку получаются весьма легкими и компактными, при этом по яркости свечения, достигающей значения в 200-250 люмен (при продолжительности работы «на максимуме» около часа) почти догоняя более серьезные фонарики. Основной недостаток таких батареек - стоимость, поскольку вместо одной CR123A можно купить 4-7 качественных батареек типоразмера АА.
Литиевые аккумуляторы, сходные по размерам с одноразовыми батарейками CR123A и предназначенные для ее замены. Существуют две версии таких аккумуляторов: с напряжением 3,0 В и 3,7 (3,6) В; и если первый тип аккумуляторов абсолютно взаимозаменяем с батарейкой CR123A (с той лишь разницей, что емкость аккумулятора примерно втрое меньше), то вторая версия с повышенным напряжением должна поддерживаться самим фонарем, иначе он может выйти из строя. Если же фонарь может работать с аккумулятором, имеющим напряжением 3,7 (3,6) В - емкость таких аккумуляторов больше, чем у «трехвольтовых», и составляет 500-700 мА·ч, - то применение этого элемента питания обеспечит увеличенную яркость свечения, доходящую до 350-450 люмен. Однако следует учесть, что при такой яркости свечения корпус компактного фонаря может не справиться с отводом тепла от светодиода, вследствие чего фонарь может раскалиться до невозможности удержания его в руке и, в конце концов, выйти из строя. Так что увлекаться максимальным режимом свечения в таких случаях не стоит.
Lithium - это литиевая батарейка, сходная с обыкновенной «пальчиковой» (AA) и геометрически, и по номинальному напряжению - 1,5 В - вот только емкость ее в 2-3 раза больше (около 3000 мАч), а масса в 1,5-2 раза меньше. Вдобавок, эта батарейка отлично выдерживает высокие токовые нагрузки, поэтому фонарь с таким элементом питания будет светить не хуже, чем с качественным NiMH-аккумулятором, а может, и лучше. Главный недостаток таких батареек - цена; как и в случае с CR123A, вместо одной АА Litium можно купить 4-7 обычных качественных «пальчиковых» батареек.
Аккумулятор размером с «пальчиковую» батарейку (АА) и емкость до 800 мА·ч. Главный плюс фонарей на этих аккумуляторах - универсальность. При использовании 14500 яркость свечения достигает 350-450 люмен при времени работы около получаса; если же такой аккумулятор внезапно «сядет», то его легко и непринужденно можно заменить повсеместно встречающейся батарейкой АА - и ваш фонарь будет продолжать светить, пусть и не так ярко.
Две одноразовые литиевые батарейки, устанавливаемые последовательно друг за другом. Ранее такой тип питания чаще всего использовался в тактических фонарях, реже - в EDC; в настоящее время обычно являяется запасным питанием для фонарей на аккумуляторах 18650.
Наиболее удобный для большинства современных фонарей тип питания, завоевавший популярность благодаря наилучшему сочетанию габаритных размеров, массы и энергоемкости. Размером 18650 несколько крупнее «пальчиковой» батарейки, масса его составляет 45-50 г, а максимальная емкость - до 3600 мА·ч. Фонари на этом элементе питания встречаются самые разнообразные - от небольших фонариков для EDC до достаточно крупных тактических и поисковых моделей. В целом, если не смущает необходимость покупки специального зарядного устройства (кроме вариантов фонарей со встроенным зарядным), именно фонари на таком типе аккумуляторов будут лучшими в соотношении габариты/масса/яркость свечения.

Благодаря использованию сразу двух аккумуляторов 18650 в фонаре достигается увеличение яркости свечения или времени работы, но также увеличиваются масса фонаря (может достигать 200-500 г) и габаритные размеры. Чаще всего элементы питания в таких фонарях устанавливаются последовательно друг за другом; иногда для этого используется съемный удлинитель-экстендер. Также встречаются фонари с параллельным расположением аккумуляторов для уменьшения габаритов. Но в любом случае такие фонари, как правило, отличаются мощностью и дальнобойностью - с дальностью «поражения» до полукилометра и более.

Стильный фонарик из полированного титана заметно выделяется среди алюминиевых собратьев - и будет прекрасным помощником на каждый день

Такой тип питания используется, как правило, в поисковых (реже - подводных) фонарях на самых мощных диодах - вроде SST90, SBT70, МK-R или нескольких XM-L2. Яркость свечения таких фонарей достигает тысяч люмен, а масса - полкилограмма и более; они могут быть как сверхдальнобойными с максимальной дальностью свыше километра, так и обеспечивающими широкий засвет при дальности до нескольких сотен метров. В любом случае, такие фонари требуют особо бережного отношения - поскольку, во-первых, они довольно массивны и при падении вероятнее могут выйти из строя, чем их более легкие собратья, а во-вторых, стоимость таких фонарей весьма высока.
Элементы питания длиной с 18650 и несколько превосходящие его диаметром, благодаря чему обладают большей энергоемкостью. Обычно используются в мощных поисковых и дайверских фонарях, хотя на одном элементе 26650 бывают и компактные «карманники».
В некоторых случаях это является необходимостью - например, в сверхмощных фонарях, где иначе пришлось бы использовать большое количество отдельных элементов питания, - в других же сделано для большего удобства владельца, поскольку процесс зарядки здесь ничем не отличается от зарядки мобильного телефона, и никаких дополнительных зарядных устройств приобретать для этого не нужно. В некоторых фонарях «родной» аккумулятор, заряжаемый встроенным зарядным устройством, можно в случае необходимости заменить сторонним (правда, этот сторонний зарядить уже получится не всегда). Это может пригодиться, если где-то в пути «родной» аккумулятор сел, а светить все же нужно.

На данный момент серьезно рассматривать фонари с лампами накаливания не стоит: одной из главных характеристик любого фонаря является экономичность, а в этом плане светодиодам нет равных. Однако и светодиод светодиоду рознь, особенно когда речь идет о мощных моделях. Дело в том, что мощные светодиоды греются весьма ощутимо, а перегрев для них буквально смерти подобен: скорость деградации кристалла растет в разы. У дешевых светодиодов непонятного происхождения параметры даже в одной серии серьезно отличаются, и в двух одинаковых внешне фонарях один будет греться, а другой проработает без проблем - а играть в лотерею Вам вряд ли понравится. Серьезные же производители (тут бесспорный авторитет - Cree) обеспечивают гораздо более точный контроль параметров продукции, да и сам ресурс у их кристаллов немал.

Лучший источник питания , если Вы не планируете долго использовать фонарь на морозе - это литий-ионные и литий-полимерные аккумуляторы, которые имеют наилучшее на сегодняшний момент соотношение емкости к массе. Хотя они и дороже обычных батареек, но возможность быстрой зарядки очень быстро компенсирует разницу в ценах. Если фонарь будет использоваться часто - лучше выбрать модель с быстросменными аккумуляторами формата 18650 и внешнее зарядное устройство, для эпизодического применения удобнее модели со встроенной USB-зарядкой.

С необходимостью в прочности корпуса и особенно защитного стекла спорить трудно. Недаром популярность заслужили американские фонарики Maglite, которые действительно могут работать как дубинка без риска повреждения самого фонаря. Но, естественно, фонарь с такими габаритами удобен далеко не всегда, а вот современные тактические фонарики можно считать настоящими универсалами: они компактны (здесь сочетание светодиодов с литиевым аккумулятором вновь демонстрирует все свои лучшие стороны), прочны, пылевлагозащита у них - не опция, а норма. Поэтому их можно использовать хоть в походе, хоть в гараже, хоть просто носить «на всякий» в кармане. Главное - учесть диаметр корпуса фонарика, так как большинство креплений под ствол рассчитываются на диаметры 22 мм (7/8 дюйма) и 25 мм (1 дюйм).

Дополнительные опции тоже не будут лишними: например, зачем отдельно тащить внешний аккумулятор для гаджетов в поход, если можно купить фонарь с функцией подзарядки внешних устройств? Ну а фонарь с регулируемым фокусом и съемным рассеивателем послужит одновременно и поисковым прожектором, и источником рассеянного света в лагере, если убавить яркость на минимум.

Для сравнения яркости наглядный показатель - максимальный световой поток, который обычно измеряется в люменах. Наглядные ориентиры - это автомобильные фары, которые тоже являются фокусированными источниками света: обычная «галогенка» выдаст около 1200 люмен, ксенон же может обеспечить и 4000 люмен.