Как удалить растворенные газы из холодной воды. Удаление из воды растворенных газов

Процесс водоподготовки часто сопровождается удалением таких газов, как углекислота, кислород и сероводород. Эти газы являются коррозийно-агрессивными, так как обладают свойствами обусловливать или усиливать коррозию металлов. Кроме того, углекислотаагрессивна по отношению к бетону, а наличие сероводорода придает воде неприятный запах. В силу вышеперечисленного актуальназадачанаиболее полного удаления этих газов из воды.

Дегазация воды - это комплекс мероприятий, направленных наудаление из воды растворенных в ней газов. Существуютхимические и физические методыдегазацииводы. Химические методы дегазации воды предполагают использование определенных реагентов, связывающих газы,растворенные в воде. Например, обескислороживание воды достигаетсявведением в нее сульфита натрия, гидразина или сернистого газа. При введении в воду сульфита натрияпроисходит его окислениедо сульфата натрия растворенным в воде кислородом:

2Na 2 SO 3 + О 2 2Na 2 SO 4

Введенный в воду сернистый газ реагирует с ней и превращается в сернистую кислоту:

SO 2 + Н 2 О → H 2 SO 3 ,

Которая, в свою очередь, растворенным в воде кислородом окисляется до серной кислоты:

2H 2 SO 3 + O 2 → 2H 2 SO 4

При этом в настоящее время в используются модифицированные растворы сульфита натрия (реагенты , и пр.), имеющие ряд преимуществ в сравнении с чистым раствором сульфита натрия.

Гидразин способствует практически полному обескислороживанию воды.

Введенный в водугидразин связывает кислород и способствует выделениюинертного азота:

N 2 H 4 + O 2 → 2H 2 O + N 2

Обескислороживание воды последним способом -наиболее совершенный, но и, в то же время,наиболее дорогой метод (из-за высокой стоимости гидразина).В связи с этим данный способ применяют в основном после физических методов обескислороживания воды с целью удаления остаточных концентраций кислорода. При этом гидразин относится к веществам первой категории опасности, что также влечёт ограничения по возможности его применения.

Одним из вариантовхимического метода является обработка воды хлором:

а)с окислением сероводорода до серы:

H 2 S + C l 2 → S + 2HC l

б)с окислением сероводорода до сульфатов:

H 2 S + 4 С l 2 + 4 Н 2 О -> H 2 SO 4 + 8HCl

Протекание этих реакций (так же как и промежуточных реакций образования тиосульфатов и сульфитов) происходит параллельно; их соотношение определяется в первую очередь дозой хлора и рН воды.

Недостатки химических методов газоудаления:

а) Процесс обработки воды усложняется и удорожается необходимостью применения реагентов. При больших часовых потоках через дегазация химическими реагентами при сравнительной простоте своей реализации начинает сильно проигрывать термической дегазации по эксплуатационным затратам.

б) Нарушение дозировки реагентов приводит к ухудшению качества воды.

Эти причины обуславливают значительно более редкое применение на крупных объектах химических методов газоудаления, чем физических.

Существует два основных способа удаления из воды растворенных газов физическими методами:

1) аэрацией - когда очищаемая от газа вода активно контактирует с воздухом (при условии, что парциальное давление удаляемого газа в воздухе близко к нулю);

2) созданиемусловий, при которых растворимость газа в воде снижается практически донуля.

Аэрацией обычно удаляют из воды свободную углекислоту и сероводород, парциальное давление которыхв атмосферном воздухе близко к нулю. Дегазаторы, осуществляющие аэрацию, в зависимости отконструктивного устройства, характера движения воды и воздуха и протекания процесса дегазации делятся на:

1) Пленочные дегазаторы (декарбонизаторы) - это колонны с насадкой(деревянной, кольцаРашига и др.), по которой тонкой пленкой стекает вода.Предназначение насадки -создание обширной поверхности контакта воды и воздуха. Воздух, нагнетаемый вентилятором, движетсянавстречу потоку воды;

2) .В нихидет продувка сжатого воздуха через слой медленно движущейся воды;

Второй способ применяется при удалении кислорода из воды, поскольку ясно, что первый способ здесь не сработает из-за значительного парциального давления кислорода в атмосферном воздухе.Чтобы удалить кислород, воду доводят до кипения, при этом происходит резкое снижениерастворимости всех газов в воде.

Доведение воды до кипения осуществляется:

1) ее нагреванием (в деаэраторах атмосферного типа);

2) снижениемтемпературы кипения воды путем понижения давления (в вакуумных деаэраторах).

В деаэраторах атмосферного типа предварительная деаэрация осуществляется в специальных деаэрационных колонках за за счет избыточного количества пара, попадающего в деаэрационный бак через подводящий паровровод, а окончательная - в деаэрационных баках за счёт продувки паром. В вакуумных дегазаторах (деаэраторах) специальные устройства (такие как вакуум-насосыиливодоструйные эжекторы)создают давление, при котором происходит кипение воды при данной температуре.

В процессе водообработки основное применение в процессах удаления углекислого газа нашли пленочные дегазаторы, для удаления сероводорода (совместно с радом других задач - подачей кислорода, как окислителя в , ) - барботажные, а для обескислороживания воды в присутствии источников пара на объекте - термические, при отсутствии - вакуумные.

Проектирование дегазаторов предусматривает определение площади поперечного сечения дегазатора, высоты водного столба в нем, необходимого расхода воздуха, тип и площадь поверхности насадки, требуемой для достижения заданного эффекта дегазации.

§ 132. Удаление из воды растворенных газов

Чаще всего в процессе водоподготовки требуется удаление углекислоты, кислорода п сероводорода. Все три газа относятся к коррозийно-агрессивным газам, обусловливающим или усиливающим процессы коррозии металлов. Углекислота, кроме того, агрессивна по отношению к бетону. Свойство этих газов обусловливать и усиливать коррозийные процессы, а также неприятный запах, который сообщает воде сероводород, во многих случаях вызывают необходимость наиболее полного удаления их из воды.

Комплекс мероприятий, связанных с удалением из воды растворенных в ней газов, называется дегазацией воды.

Применяются химические и физические методы дегазаций воды.

Сущность первых заключается в использовании определенных реагентов, которые связывают растворенные в воде газы. Например, обескислороживание воды может быть достигнуто путем введения в нее сульфита натрия, сернистого газа или гидразина. Сульфит натрия при введении его в воду окисляется растворенным в воде кислородом до сульфата натрия:

2Na2SO3 + О2 -> 2Na2SO4.

В случае применения сернистого газа образуется сернистая кислота:

SO2 -f Н2О -»- H2SO3,

которая кислородом, растворенным в воде, окисляется до серной кислоты:

2H2SO3-f O2-*-2H2SO4.

Химическим реагентом, при помощи которого удается достичь

практически полного обескислороживания воды, является гидразин.

При введении его в воду происходит связывание кислорода и выделение инертного азота:

N2H4 + O2->-2H2O-f-N2.

Последний химический способ обескислороживания воды является наиболее совершенным, но вместе с тем и наиболее дорогим ввиду высокой стоимости гидразина. Поэтому этот способ применения в основном для окончательного удаления кислорода из воды после физических методов ее обескислороживания.

Примером химического метода удаления из воды сероводорода может служить обработка воды хлором:

а) с окислением до серы:

HJS + C12-»-S + 2HC1;

б) с окислением до сульфатов:

H2S + 4С12 + 4Н2О -> H2SO4 + 8HC1

Эти реакции (так же как промежуточные реакции образования тиосуль-фатов и сульфитов) протекают параллельно в определенных соотношениях, зависящих в первую очередь от дозы хлора и рН воды. Химическим методам газоудаления свойственны следующие недостатки: а) необходимость применения реагентов, усложняющих и удорожающих процесс обработки воды; б) возможность ухудшения качества воды при нарушении дозировки реагентов. Вследствие этого химические методы газоудаления применяются значительно реже физических.

Физические методы удаления из воды растворенных газов могут осуществляться двумя способами: 1) вода, содержащая удаляемый газ, приводится в соприкосновение с воздухом, если парциальное давление удаляемого газа в воздухе близко к нулю; 2) создаются условия, прл которых растворимость газа в воде становится близкой к нулю.

При помощи первого способа, т. е. при помощи аэрации воды, обычно удаляются свободная углекислота и сероводород, поскольку парциальное давление этих газов в атмосферном воздухе близко к нулю.

Ко второму способу обычно приходится прибегать при обескислороживании воды, так как при значительном парциальном давлении кислорода в атмосферном воздухе аэрацией воды кислород из нее удалить нельзя. Для удаления из воды кислорода ее доводят до кипения, при котором растворимость всех газов в воде падает до нуля. Вода доводится до кипения либо ее нагреванием (термические деаэраторы), либо путем понижения давления до такого значения, при котором вода кипит при данной ее температуре (вакуумные дегазаторы).


Удаление из воды растворенных газов в процессе водоподготовкп осуществляется на дегазаторах различных типов, которые по их конструктивному устройству, характеру движения воды и воздуха и по обстановке, в которой осуществляется процесс дегазации, можно классифицировать следующим образом:

1) пленочные дегазаторы, представляющие собой колонны, загру

женные той или иной насадкой (деревянной, кольцами Рашига и др.),

по которой вода стекает тонкой пленкой. Насадка служит для создания

развитой поверхности соприкосновения воды и воздуха, нагнетаемого

вентилятором навстречу потоку воды;

2) барботажные дегазаторы, в которых через слой медленно движу

щейся воды продувается сжатый воздух;

3) вакуумные дегазаторы, где при помощи специальных устройств

(вакуум-насосов или водоструйных эжекторов) создается такое давле

ние, при котором вода кипит при данной температуре.

В технике водообработки в основном применяется пленочные дегазаторы и для обескислороживания воды вакуумные (или термические). Барботажные дегазаторы применяются в виде исключения из-за сравнительно высокой эксплуатационной стоимости (расхода электроэнергии на компрессию воздуха).

При проектировании дегазаторов должны быть определены следующие величины: площадь поперечного сечения дегазатора, необходимый расход воздуха, площадь поверхности насадки, требуемая для достижения заданного эффекта дегазации.

Площадь поперечного сечения дегазаторов должна определяться по допустимой плотности орошения насадки, т. е. по расходу воды, приходящемуся на 1 м2 площади поперечного сечения дегазатора. При глубоком удалении из воды углекислоты (до 2-3 мг/л) на дегазаторах, загруженных кольцами Рашига (25X25X3 мм), допустимая плотность орошения насадки 60 м3/(м2«ч), удельный расход воздуха 15 м3/м3; на дегазаторах, загруженных деревянной насадкой из досок, соответственно 40 м3/(м2«ч) и 20 м3/м3; при обескислороживании воды на вакуумных дегазаторах допустимая плотность орошения насадки 5 м3/(м2«ч).

Требуемая площадь поверхности насадок, загружаемых в дегазатор, определяется по формуле, приведенной в § 131. Там же указаны методы определения остальных величин, входящих в эту формулу. Значения К находятся для каждого типа дегазаторов по соответствующим графикам1.

Важнейшим фактором коррозии железа в воде является растворенный кислород. В обратных трубопроводах конденсата нагревательных систем свободная двуокись углерода также имеет первостепенное значение.
Степень удаления свободного кислорода, необходимая для предупреждения серьезной коррозии, зависит от рабочей температуры и, в меньшей степени, от количества воды, проходящей через систему. В системах холодной воды желательно, чтобы содержание кислорода не превышало 0,2 мл/л. Когда требуется достигнуть меньшего содержания кислорода, чем это возможно при одноступеньчатой деаэрации, применяется дополнительная химическая обработка воды, выходящей из деаэратора (сернистонатриевой солью или путем применения много-ступеньчатой деаэрации). При 70°, как это имеет место во многих горячих системах водоснабжения, обычно не требуется уменьшение содержания кислорода ниже 0,07 мл/л. Для паровых котлов, работающих под давлением ниже 17,5 кг/см2 -(без экономайзеров), желательный предел не должен превышать примерно 0,02 мл/л для котлоз высокого давления (или при применении экономайзеров) требуется практически полное отсутствие кислорода, т. е. ниже 0,0035 мл/л.

ХИМИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ ГАЗОВ, РАСТВОРЕННЫХ В ВОДЕ (ДЕАКТИВАЦИЯ)

Удаление газов химическими средствами осуществляется путем соприкосновения горячей воды, при температуре около 70°, с большой поверхностью перфорированного железного листа или железного лома в течение получаса или более - до тех пор, пока кислород не будет почти целиком израсходован на коррозию. Для этой цели были сконструированы специальные установки для теплофикационных систем, снабженные песочными фильтрами; однако такие установки слишком громоздки и требуют постоянного ухода. Поэтому указанный способ вытеснен, в значительной степени, физическим способом удаления газов - деаэрацией. Сернистонатриевая соль применяется для удаления остаточного растворенного кислорода и оправдывает свою стоимость только в тех случаях, когда 95% свободного кислорода предварительно удаляются деаэрацией. Для удаления 1 кг кислорода, растворенного в воде, требуется около 8 кг сернистонатриевой соли. Для обеспечения полного удаления кислорода в котлах требуется около 30 мг/л избыточной сернистонатриевой соли. В меньшей степени используется для деаэрации серножелезистая соль, нейтрализованная едким натром.

ФИЗИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ ГАЗОВ, РАСТВОРЕННЫХ В ВОДЕ (ДЕАЭРАЦИЯ)

Подбирая такие соотношения температуры и давления, при которых газы становятся практически нерастворимыми, можно полностью удалить их из воды. За последние годы конструкция аппаратуры для удаления газов значительно улучшена. В настоящее время имеется несколько удачных типов деаэраторов, каждый из которых приспособлен для специальной цели. Существует установка и для удаления из воды СО2, Н2S и MH3.

Деаэрация холодной воды

Существуют установки для деаэрации воды без нагревания дающие 15000 м3 в день и снижающие содержание кислорода до 0,22 мл/л, что признано достаточным для предупреждения коррозии и образования бугорков в длинном стальном трубопроводе. Вода в таком аппарате разбрызгивается по специальным лоткам камеры, находящейся под низким давлением. Газы могут удаляться паровыми эжекторами с холодильниками или вакуумными насосами.

Деаэрация горячей воды

Главным условием деаэрации является поддержание воды в тонкораспыленном состоянии (в течение достаточного времени) при температуре кипения, соответствующей давлению, при котором растворенные газы свободно выделяются. При простом типе открытого нагревателя питательной воды деаэратор, при нагреве до 88 - 93° и свободном отводе газов в атмосферу, снижает концентрацию кислорода приблизительно до 0,3 мл/л. Это значительно уменьшает коррозию паровых котлов низкого давления. Однако в экономайзерах или котлах высокого давления коррозия так сильно возрастает с температурой, что необходимо более полное удаление кислорода.

Деаэраторы для горячих систем водоснабжения

Такой тип деаэраторов предназначен преимущественно для больших зданий, например, для больниц, гостиниц и т. п. Воду нагревают под вакуумом так, чтобы температура кипения ее не превышала 60-80°. Греющий пар проходит через змеевики и поэтому вода не соприкасается с ним и не загрязняется. Воду разбрызгивают вниз по тарелкам и нагревают двумя рядами паровых змеевиков. Температура пара, поступающего в нижние змеевики, выше температуры воды, которая вследствие этого испаряется; пар увлекает выделившиеся газы через клапан, охлаждаемый входящей холодной водой. Конденсат из клапана стекает обратно, в тарелочную камеру, в то время как газы выбрасываются вакуумным насосом или паровым эжектором.
Деаэратор помещается в подвале здания и требует циркуляционного насоса для горячей воды; иногда его устанавливают на достаточно высоком уровне, чтобы возможна была подача воды за счет естественной циркуляции. В таких условиях достигается концентрация кислорода 0,04 мл/л, что обеспечивает защиту системы от коррозии при температуре ниже 70°.

Деаэраторы для котловой питательной воды

В этих деаэраторах осуществляется прямой контакт воды с паром. Чаще всего применяются деаэраторы тарелочного типа, работающие под давлением или вакуумом. Деаэратор с распылением, работающий под небольшим давлением, широко применяется в котельных установках. В деаэраторе тарелочного типа холодная питательная вода проходит через холодильник, затем поступает в камеру, нагреваемую паром, где разбрызгивается на металлические тарелки. После этого вода стекает в резервуар для хранения. Пар наполняет все пространство, причем направление его движения таково, что он нагревает воду и удаляет выделяющиеся газы. Таким образом можно достигнуть практически полного отсутствия кислорода в воде.
В более современной модели деаэратора происходит распыление воды в атмосферу пара при давлении приблизительно 0,1 кг/см2. Этот тип деаэратора разработан для судовых котлов. Вероятно он найдет применение также и для котлов стационарного типа.
Деаэратор состоит из холодильника, секции с паровым обогревом, деаэрационной секции, окружающей впуск пара, и секции для хранения деаэрированной воды, расположенной внизу аппарата. Холодная питательная вода проходит через холодильник, затем через распыляющие форсунки, поступает в камеру, обогреваемую паром, и снова через форсунки в деаэрационную камеру, а затем в водосборник. Пар входит в деаэрационную камеру под давлением 0,7 кг/см2 и подымается в холодильник, где выпускаются удаляемые (неконденсирующиеся) газы, а теплота пара передается воде, вступающей в аппарат. Большая часть растворенного кислорода удаляется из воды при первоначальном ее нагревании; последние 5% кислорода удаляются значительно труднее. Для этого служит деаэрационная камера, которая обеспечивает практически, полное удаление кислорода из воды.
Наиболее мощные деаэраторы удаляют также всю свободную двуокись углерода и частично -полусвязанную углекислоту и другие газы. При этом, вследствие удаления двуокиси углерода, рН воды увеличивается.
Разработкой новых типов деаэраторов практически решен, вопрос об устранении коррозии в водных системах и паровых котлах. Подобный аппарат следует считать неотъемлемой частью современной котельной установки.

Популярные статьи

   Стеклоблоки - элитный материал
Декоративный стеклоблок внешне нередко мало отличим от самого хрусталя, и вы вряд ли ошибетесь, избрав столь художественно продуманный стройматериал дизайнерски просчитанной деталью внутреннего интерьера. Появились целые коллекции художественно окрашенного стеклоблока, и не только однотонные...

Наличие кислорода в греющей паровой системе приводит к коррозии котлов, тепловых сетей, снижает эффективность переноса тепла с паром.
Существуют химические и физические методы удаления кислорода из питательной воды. Физические методы деаэрации осуществляются вакуумным, термическим способом, азотной пузырьковой деаэрацией.

Химические методы удаления кислорода - дозирующее оборудование серии «MWT R»

  1. На котлах низкого давления до 7,0 Мпа, с применением сульфита натрия, метабисульфита натрия;
  2. На котлах высокого, сверхвысокого, сверхкритичного давления, с применением гидразин гидрата (при окислении образуется азот и вода), диэтилгидроксиламин, изоаскорбиновую кислоту, карбогидразин, гидрохинон, пленкообразующий амин - хеламин.

Степень извлечения свободного кислорода для предотвращения котловой коррозии, коррозии сетей, зависит от температуры теплоносителя, объема воды. Содержание кислорода в системах питательной воды при одноступенчатой аэрации достигает значения не более 0,2 мл/л, а при условии содержания кислорода менее 0,07 мл\л, применяется дополнительная обработка воды дозированием химических препаратов.

Каталитический метод глубокого удаления кислорода на палладиевом катализаторе, напорной фильтрации - оборудование серии «MWT Pl»

Глубокое удаление растворенного кислорода из воды от 20 мкг\л, расчетной скоростью фильтрации от 5 – 80 м\ч. Извлечение растворенного кислорода входящей воды, основывается на принципе взаимодействия палладированного ионитного материала с восстановлением кислорода водородом. Фильтрующий каталитический материал химически стойкий к кислотам, щелочам – нерастворим в органических растворителях, воде, не ядовитый, негорючий, не взрывоопасный. Промывка фильтра производится обратным током при наличии не растворенных соединений, либо без промывки в условиях чистой воды до 10 мкм.

Технические характеристики фильтрующего материала:

Показатели

Описание

Соответствие

Состав гранулометрический:
размер зерен, мм
объемная доля рабочей фракции, %, не менее
коэффициент однородности, не более

0,45 – 1,05
97,0
0,6
1,7

соотв.
99,0
гарант.
гарант.

Массовая доля воды, %

Окисляемость фильтрата в пересчете на кислород, мг/г, не более

Осмотическая стабильность, %, не менее

Насыпная масса, кг/м3

Мембранная дегазация для глубокого удаления кислорода - оборудование серии «MWT MD»

Применение технологии глубокого удаления кислорода для паровых и водогрейных систем, с использованием гидрофобных мембран в мембранных контакторах, позволяет достигать глубокой степени очистки воды до 1 мкг\л, а при необходимости удаления кислорода менее 1 мкг/л двухступенчатой дегазацией, с физической сдувкой газом и вакуумированием, при предварительном снижением до 100 мкг/л.

Преимущества применения мембранной дегазации «MWT MD»:

  1. Блочное наращивание для увеличения производительности;
  2. Регулирование степени извлечения растворенного кислорода;
  3. Стабильные показатели высокого качества дегазации;
  4. Незначительные эксплуатационные затраты;
  5. Безреагентная дегазация.

В.В. Волков, И.В.Петрова, А.Б.Ярославцев, Г.Ф.Терещенко

Несмотря на то, что содержание растворенного кислорода в воде сравнительно мало (при нормальных условиях порядка 8 мг/л), в микроэлектронике, энергетике и пищевой промышленности выставляются достаточно жесткие требования по снижению его концентрации в технологических водах до уровня нескольких мкг/л. Так, например, в пищевой промышленности кислород, содержащийся в воде, ухудшает качество ряда продуктов, в частности, он становится причиной уменьшения стойкости пива к старению. В энергетике для снижения коррозии и отложения накипи с целью повышения срока службы тепловых сетей и оборудования на 10 и более лет содержание кислорода в воде должно быть на уровне 5 мкг/л.

Наиболее строгие требования, предъявляемые к качеству ультрачистой воды, выдвигает полупроводниковая промышленность – в некоторых случаях требуемый уровень не должен превышать 1 мкг/л. На всех предприятиях микроэлектронной промышленности уже сегодня расходуется огромное количество сверхчистой воды. Сверхчистая вода отсутствует на рынке как коммерческий продукт. В микроэлектронной промышленности она производится непосредственно на предприятиях и по трубопроводам подается в цеха на места ее использования. В настоящее время ультрачистая вода часто используется для промывки кремниевых подложек при производстве интегральных схем. Присутствие растворенного кислорода становится причиной образования оксидного слоя на поверхности подложки, скорость роста которого зависит от времени взаимодействия воды с поверхностью и от концентрации растворенного кислорода. Образование оксидного слоя происходит даже тогда, когда используется ультрачистая вода с низким уровнем растворенного кислорода 40-600 мкг/л.

Удаление растворенного кислорода из воды может быть достигнуто как физическими, так и химическими методами. Химические методы, позволяют проводить глубокую реагентную очиcтку воды от растворенного кислорода. Однако, традиционные химические методы (восстановление гидразингидратом или сульфитом натрия при повышенных температурах) имеют существенный недостаток – введение примесей (реагентов) в воду в процессе очистки.

Традиционные физические методы, такие как термическая дегазация, вакуумная дегазация или азотная пузырьковая деаэрация, являются дорогостоящими, требуют больших размеров установки и имеют небольшую площадь активной поверхности на единицу объема. Кроме того, с помощью данных подходов достаточно сложно снизить концентрацию растворенного кислорода с нескольких частей на миллион до уровня нескольких частей на миллиард.

Применение мембранных контакторов позволяет достичь более глубоких степеней очистки и имеет ряд преимуществ: существенное увеличение площади поверхности газ-жидкость на единицу объема, большие скорости массопереноса, отсутствие дисперсии между фазами и возможность масштабирования (модульность конструкций). Эти преимущества делают мембранные методы привлекательным выбором среди других доступных физических способов удаления кислорода. Так, например, недавно на атомных электростанциях в Южной Корее (Kori и Wolsung) были установлены новые системы водоподготовки, состоящие из двух компактных мембранных модулей-контакторов суммарной площадью 260 м 2 . Данная технология позволяет снижать содержание растворенного кислорода в технологических водах АЭС до 0,39 и 0,18 мг/л, соответственно, путем физической сдувки газом-носителем и вакуумированием при 50 о С.

Однако, такие методы имеют ряд недостатков, например, частичное испарение воды во время проведения процесса, большой расход инертного газа (например, азота) или пара, использование дополнительного оборудования для создания и поддержания технического вакуума. Кроме того, для достижения высоких степеней очистки воды от растворенного кислорода (менее 1 мкг/л) требуется использование двухступенчатых систем: предварительная стадия – снижение до 100 мкг/л, и завершающая очистка до уровня 1 мкг/л и ниже.

Перспективным химическим методом удаления растворенного кислорода является процесс каталитического восстановления кислорода водородом на палладиевом катализаторе с образованием воды. Существенным недостатком таких методов является необходимость предварительного насыщения воды водородом. Данная проблема сегодня частично решается в промышленности с помощью применения специальных форсунок или мембранных контакторов. Таким образом, существующие каталитические методы удаления требуют проведения процесса в две стадии: предварительное растворение водорода в воде и последующее восстановление растворенного кислорода в воде водородом на палладиевом катализаторе.

Недавно Институтом нефтехимического синтеза им.А.В.Топчиева РАН (ИНХС РАН) совместно с Голландской организацией прикладных научных исследований (TNO) был разработан и запатентован метод нанесения металлического палладия на внешнюю поверхность гидрофобных полимерных мембран. Разработанная технология нанесения палладиевого катализатора на внешнюю поверхность пористых мембран в виде наноразмерных частиц позволила совместить в одном модуле преимущества высокоэффективных контакторов газ-жидкость с высокой глубиной очистки воды характерной для химических реакторов (рис.1). Важным достоинством данного комбинированного подхода является реализация одностадийного процесса удаления из воды растворенного кислорода при комнатной температуре без стадии барботажа водорода в воде.

Принцип действия заключается в том, что вода, содержащая растворенный кислород, омывает мембрану с внешней стороны, а водород, используемый в качестве восстановителя, подается внутрь пористой половолоконной мембраны и диффундирует через поры мембраны к внешней палладированной поверхности, где и протекает реакция восстановления кислорода водородом с образованием молекул воды.

Рис.1. Принцип одностадийного удаления растворенного кислорода из воды в мембранном контакторе/реакторе.

Разработанный метод нанесения палладия на внешнюю поверхность полимерных мембран позволяет получать каталитические мембраны с количеством палладия менее 5 масс.%. По данным сканирующей электронной микроскопии видно, что палладий находится на внешней стороне мембраны (рис.2), при этом методами РСА, ЭДА и EXAFS было доказано, что палладий на поверхности полых волокон находится только в металлической форме с размером частиц порядка 10-40 нм.

Рис.2. Внешняя поверхность Pd-содержащих пористых полипропиленовых половолоконных мембран: а – оптическая микроскопия (увеличение в 70 раз), б – сканирующая электронная микроскопия (увеличение в 8500 раз).

Разработанный метод нанесения был успешно адаптирован на неразборный коммерческий мембранный контактор Liqui-Cel Extra Flow (1,4 м 2 ; США). Для изучения процесса удаления растворенного кислорода из воды использовался режим по газу, при котором полностью исключалась физическая сдувка и удаление было возможно только за счет каталитической реакции восстановления. При подаче водорода наблюдается резкое падение концентрации кислорода в воде при комнатной температуре только за счет каталитической реакции.

Рис.3. Зависимость концентрации растворенного кислорода в воде от времени проведения эксперимента в проточном режиме: 1 – гелий (расход воды 25 л/ч); 2 – водород (расход воды 25 л/ч); 3 – водород (расхода воды 10 л/ч).

При пилотных испытаниях каталитического мембранного контактора/реактора в режиме рециркуляции воды в системе (температура 20 о С) концентрация растворенного кислорода в воде была снижена более чем на 4 порядка до уровня 1 мкг/л и ниже только за счет каталитической реакции. Такая реализация позволяет исключить неминуемо высокие расходы газа или пара по сравнению с традиционным процессом физической сдувки. Полученные результаты, соответствуют самым жестким требованиям предъявляемым промышленностью к ультрачистой воде в настоящее время.

Длительные (6месяцев) испытания показали высокую стабильность каталитической активности мембранных контакторов. Было установлено, что даже в случае отравления катализатора или его деактивации возможно повторное нанесение палладия на поверхность мембран эксплуатируемого мембранного контактора/реактора.

В результате проведенных исследований ИНХС РАН совместно с TNO разработан каталитический мембранный контактор/реактор, содержащий палладиевый катализатор, нанесенный специальным способом на внешнюю поверхность пористых полипропиленовых половолоконных мембран. Более того, методика адаптирована таким образом, что процесс нанесения осуществляется без разбора промышленных мембранных контакторов, обеспечивая простоту и масштабирование их производства до необходимого уровня. Стоимость процесса нанесения палладия может быть оценена на уровне 5-7 евро за 1 м 2 мембраны.

Разработанный одностадийный метод удаления растворенного кислорода полностью готов к коммерциализации и позволяет получать сверхчистую технологическую воду для различных областей микроэлектроники, энергетики и пищевой промышленности.