Предварительный входной каскад усилителя низкой частоты унч. Усилительные каскады

Самая суть для разбирающихся практиков

Усилитель собран по принципу «двойное моно», схема одного канала показана на рис.1 . Первый каскад на транзисторах VT1-VT4 – это усилитель напряжения с коэффициентом около 2,9 , второй каскад на VT5 – усилитель тока (эмиттерный повторитель). При входном напряжении 1 В выходная мощность около 0,5 Вт на нагрузке 16 Ом. Рабочий диапазон частот по уровню -1 dB примерно от 3 Гц до 250 кГц. Входное сопротивление усилителя – 6,5…7 кОм, выходное – 0,2 Ом.

Графики КНИ на частоте 1 кГц при выходной мощности 0,52 Вт и 0,15 Вт показаны на рис.2 и рис.3 (сигнал в звуковую карту подаётся через делитель «30:1»).

На рис.4 показан результат интермодуляционных искажений при измерении двумя тонами равного уровня (19 кГц и 20 кГц).

Усилитель собран в подходящем по размерам корпусе, взятом от другого усилителя. К цепям питания одного из каналов подключен блок управления вентиляторами (рис.5 ), контролирующий температуру одного из радиаторов выходных транзисторов (монтажная плата с навесным монтажом видна в центре на рисунке 6 ).

Оценка звучания на слух – «неплохо». Звук к колонкам не «привязан», панорама есть, но её «глубина» меньше, чем та, к которой привык. С чем это связанно, пока не выяснил, возможно (варианты с другими транзисторами, с изменением тока покоя выходных каскадов и поиском точек подключения входных/выходных «земель» были проверены).

Теперь для тех, кому интересно, немного об экспериментах

Эксперименты заняли достаточно долгое время и проводились немного хаотично – переходы с одного на другое делались по мере решения одних вопросов и появлению других, поэтому в схемах и измерениях могут быть заметны некоторые несовпадения. В схемах это отражается как нарушение нумерации элементов, а в измерениях - как изменение уровня шумов, наводок от сети 50 Гц, пульсаций 100 Гц и их продуктов (применялись разные блоки питания). Но в большинстве случаев замеры проводились несколько раз, поэтому неточности не должны быть особо значимыми.

Все эксперименты можно разбить на несколько. Первый был проведён для оценки принципиальной работоспособности TND каскада, следующие – для проверки таких характеристик, как нагрузочная способность, коэффициент усиления, зависимость линейности, работа с выходным каскадом.

Достаточно полную теоретическую информацию о работе TND каскада можно узнать из статей Г.Ф. Прищепова в журналах «Схемотехника» №9 2006 г. и «Радиохобби» №3 2010 г. (там примерно одинаковые тексты), поэтому здесь будет рассмотрено только его практическое применение.

Итак, первое – оценка принципиальной работоспособности

Сначала была собрана схема на транзисторах КТ315 с коэффициентом усиления около трёх (рис.7 ). При проверке оказалось, что с теми номиналами R3 и R4, что показаны на схеме, усилитель работает только с сигналами малого уровня, а при подаче 1 В происходит перегруз по входу (1 В – это уровень, который могут отдавать ПКД и звуковая карта компьютера, поэтому почти все измерения приведены к нему). На рисунке 8 на нижнем графике показан спектр выходного сигнала, на верхнем – входного и на нём видны искажения (КНИ должен быть около 0,002-0,006%). Глядя на графики и сравнивая уровни в каналах, надо учитывать, что выходной сигнал поступает в звуковую карту через делитель 10:1 (с входным сопротивлением около 30 кОм, резисторы R5 и R6 на рис.7 ) – ниже по тексту параметры делителя будут другими и об этом всегда будет указано).

Если считать, что появление искажений во входном сигнале говорит об изменении входного сопротивления каскада (что обычно вызвано неправильно выбранным режимом по постоянному току), то для работы с бОльшими входными сигналами следует увеличивать сопротивление R4 и, соответственно, для сохранения Кус равного трём, увеличивать R3.

После установки R3=3,3 кОм, R4=1,1 кОм, R1=90 кОм и повышения напряжения питания до 23В, удалось получить более-менее приемлемый значения КНИ (рис.9 ). Также выяснилось, что TND каскад «не любит» низкоомную нагрузку, т.е. чем больше будет сопротивление следующего каскада, тем меньше уровни гармоник и тем ближе к расчетному значению становится коэффициент усиления (ниже будет рассмотрен ещё один пример).

Затем усилитель был собран на печатной плате и к нему был подключен эмиттерный повторитель на составном транзисторе КТ829А (схема на рисунке 1 ). После установки транзистора и платы на радиатор (рис.10 ), усилитель был проверен при работе на нагрузку 8 Ом. На рисунке 11 видно, что сильно выросло значение КНИ, но это результат работы эмиттерного повторителя (сигнал со входа усилителя (верхний график) берётся в компьютер напрямую, а с выхода – через делитель 3:1 (нижний график)).

На рисунке12 показан график КНИ при входном сигнале 0,4 В:

После этого было проверено ещё два варианта повторителей – с составным транзистором из биполярных КТ602Б+КТ908А и с полевым IRF630A (ему потребовалось увеличение тока покоя за счёт установки на затворе +14,5В и уменьшения сопротивления R7 до 5 Ом при постоянном напряжении на нём 9,9 В (ток покоя около 1,98 А)). Лучшее, что получилось при входных напряжениях 1 В и 0,4 В, показано на рисунках 13 и 14 (КТ602Б+КТ908А), 15 и 16 (IRF630A):

После этих проверок схема вернулась к варианту с транзистором КТ829, был собран второй канал и после прослушки макета при питании от лабораторных источников, был собран усилитель, показанный на рисунке 6 . Два или три дня ушло на отслушивание и мелкие доработки, но на звуке и характеристиках усилителя это почти не отразилось.

Оценка нагрузочной способности

Так как желание проверить каскад TND на «грузоподъемность» ещё не пропало, был собран новый макет на 4-х транзисторах в цепочке (рис.17 ). Напряжение питания +19 В, делитель на выходе каскада 30 кОмный «10:1», входной сигнал – 0,5 В, выходной – 1,75 В (коэффициент усиления равен 3,5, но если делитель отключить, то выходное напряжение получается около 1,98 В, что говорит об Кус=3,96):

Подбирая сопротивление резистора R1, можно получить некоторый минимальный КНИ и этот график при нагрузке 30 кОм показан на рисунке 18 . Но если теперь последовательно резистору R5 установить ещё один такого же номинала (54 кОм), то гармоники получают вид, показанный на рисунке 19 – вторая гармоника вырастает примерно на 20 dB относительно основного тона и чтобы её вернуть к низкому значению, нужно опять изменить сопротивление R1. Это косвенно указывает на то, что для получения максимально стабильных значений КНИ питание каскада должно быть стабилизировано. Проверяется просто – изменение напряжения питания примерно также меняет вид гармоникового «хвоста».

Так, хорошо, это каскад работает с 0,5 В на входе. Теперь надо бы проверить его при 1 В и, допустим, с коэффициентом усиления «5».

Оценка коэффициента усиления

Каскад собран на транзисторах КТ315, напряжение питания +34,5 В (рис.20 ). Чтобы получить Кус=5, были поставлены резисторы R3 и R4 номиналами 8,38 кОм и 1,62 кОм. На нагрузке в виде резисторного делителя «10:1» с входным сопротивлением около 160 кОм выходное напряжение получилось около 4,6 В.

На рисунке 21 видно, что КНИ менее 0,016%. Большой уровень помехи 50 Гц и других кратных выше по частоте – это плохая фильтрация питания (работает на пределе).

К этому каскаду был подключен повторитель на КП303+КТ829 (рис.22 ) и затем сняты характеристики всего усилителя при работе на нагрузку 8 Ом (рис.23 ). Напряжение питания 26,9 В, коэффициент усиления около 4,5 (4,5 В переменки на выходе на нагрузке 8 Ом – это примерно 2,5 Вт). При настройке повторителя на минимальный уровень КНИ пришлось изменить напряжение смещения TND каскада, но так как уровень его искажений намного меньше, чем повторителя, то на слух это никак не отразилось – были собраны два канала и отслушаны в макетном варианте. Разницы в звучании с описанным выше полуваттным вариантом усилителя не замечено, но так как усиление нового варианта было избыточно, а тепла он выделяет больше, то схема была разобрана.

При регулировке напряжения смещения TND каскада можно найти такое положение, что гармониковый «хвост» имеет более ровный спад, но становится длинней и при этом уровень второй гармоники вырастает на 6-10 dB (общий КНИ становится около 0,8-0,9%).

При таком большом КНИ повторителя изменением номинала резистора R3 можно смело менять коэффициент усиления первого каскада как в большую, так и в меньшую сторону.

Проверка каскада с бОльшим током покоя

Схема была собрана на транзисторной сборке КТС613Б. Ток покоя каскада 3,6 мА - это самый большой из всех проверенных вариантов. Выходное напряжение на резисторном делителе 30 кОм получился 2,69В, КНИ при этом около 0,008% ((рис.25 ). Это примерно в три раза меньше, чем показано на рисунке 9 при проверке каскада на КТ315 (с таким же коэффициентом усиления и приблизительно с таким же напряжением питания). Но так как ещё одну такую же транзисторную сборку найти не удалось, второй канал не собирался и усилитель, соответственно, не слушался.

При увеличении сопротивления R5 в два раза и без подстройки напряжения смещения КНИ становится около 0,01% (рис.26 ). Можно сказать, что вид «хвоста» меняется незначительно.

Попытка оценки полосы рабочих частот

Сначала проверялся макет, собранный на транзисторной сборке. При использовании генератора ГЗ-118 с полосой выдаваемых частот от 5 Гц до 210 кГц «завалов на краях» не было обнаружено.

Затем проверялся уже собранный полуваттный усилитель. Он ослабил сигнал частотой 210 кГц примерно на 0,5 dB (при этом на 180 кГц изменений не было).

Нижнюю границу оценить было нечем, по крайней мере, не удалось увидеть разницу между входным и выходным сигналами при запуске свип-генератора программы , начиная с частот 5 Гц. Поэтому можно считать, что она ограничивается ёмкостью разделительного конденсатора С1, входным сопротивлением TND каскада, а также ёмкостью «выходного» конденсатора С7 и сопротивлением нагрузки усилителя – примерный расчет в программе показывает -1 dB на частоте 2,6 Гц и -3 dB на частоте 1,4 Гц (рис.27 ).

Так как входное сопротивление TND каскада достаточно низкое, то регулятор громкости следует выбирать не более 22...33 кОм.

Заменой выходного каскада может быть любой повторитель (усилитель тока), обладающий достаточно большим входным сопротивлением.

В приложении к тексту находятся файлы двух вариантов печатных плат в формате программы 5 версии (рисунок при изготовлении плат по надо «зеркалить»).

Послесловие

Спустя несколько дней увеличил питание каналов на 3 В, заменил 25-тивольтовые электролитические конденсаторы на 35-тивольтовые и подстроил напряжения смещения первых каскадов на минимум КНИ. Токи покоя выходных каскадов стали около 1,27 А, значения КНИ и ИМД при 0,52 Вт выходной мощности уменьшились до 0,028% и 0,017% (рис.28 и 29 ). На графиках видно, что увеличились пульсации 50 Гц и 100 Гц, но на слух их не слышно.

Литература:
1. Г. Прищепов, «Линейные широкополосные TND-усилители и повторители», журнал «Схемотехника» №9, 2006 г.

Андрей Гольцов, r9o-11, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок №1, детали на один канал
VT1...VT4 Биполярный транзистор

PMSS3904

4 В блокнот
VT5 Биполярный транзистор

КТ829А

1 В блокнот
VD1...VD4 Диод

КД2999В

4 В блокнот
R1 Резистор

91 кОм

1 smd 0805, точный номинал подбирать при настройке В блокнот
R2 Резистор

15 кОм

1 smd 0805 В блокнот
R3 Резистор

3.3 кОм

1 smd 0805 В блокнот
R4 Резистор

1.1 кОм

1 smd 0805 В блокнот
R5, R6 Резистор

22 Ом

2 smd 0805 В блокнот
R7 Резистор

12 Ом

1 набрать из ПЭВ-10 В блокнот
R8, R9 Резистор

Усилители низкой частоты в основном предназначены для обеспечения заданной мощности на выходном устройстве, в качестве которого может быть – громкоговоритель, записывающая головка магнитофона, обмотка реле, катушка измерительного прибора и т. д. Источниками входного сигнала являются звукосниматель, фотоэлемент и всевозможные преобразователи неэлектрических величин в электрические. Как правило, входной сигнал очень мал, его значение недостаточно для нормальной работы усилителя. В связи с этим перед усилителем мощности включают один или несколько каскадов предварительного усиления, выполняющих функции усилителей напряжения.

В предварительных каскадах УНЧ в качестве нагрузки чаще всего используют резисторы; их собирают как на лампах, так и на транзисторах.

Усилители на биполярных транзисторах обычно собирают по схеме с общим эмиттером. Рассмотрим работу такого каскада (рис. 26). Напряжение синусоидального сигнала u вх подают на участок база – эмиттер через разделительный конденсатор С р1 , что создает пульсацию тока базы относительно постоянной составляющей I б0 . Значение I б0 определяется напряжением источника Е к и сопротивлением резистора R б . Изменение тока базы вызывает соответствующее изменение тока коллектора, проходящего по сопротивлению нагрузки R н . Переменная составляющая тока коллектора создает на сопротивлении нагрузки R k усиленное по амплитуде падение напряжения u вых .

Расчет такого каскада можно произвести графически с использованием приведенных на рис. 27 входных и выходных характеристик транзистора, включенного по схеме с ОЭ. Если сопротивление нагрузки R н и напряжение источника Е к заданы, то положение линии нагрузки определяется точками С и D . При этом точка D задана значением Е к , а точка С – током I к =Е к /R н . Линия нагрузки CD пересекает семейство выходных характеристик. Выбираем рабочий участок на линии нагрузки так, чтобы искажения сигнала при усилении были минимальны. Для этого точки пересечения линии CD с выходными характеристиками должны находиться в пределах прямолинейных участков последних. Этому требованию соответствует участок АВ линии нагрузки.

Рабочая точка при синусоидальном входном сигнале находится в середине этого участка – точка О . Проекция отрезка AO на ось ординат определяет амплитуду коллекторного тока, а проекция того же отрезка на ось абсцисс – амплитуду переменной составляющей коллекторного напряжения. Рабочая точка O определяет ток коллектора I к0 и напряжение на коллекторе U кэ0 соответствующие режиму покоя.

Кроме того, точка O определяет ток покоя базы I б0 , а следовательно, и положение рабочей точки O" на входной характеристике (рис. 27, а, б). Точкам А и В выходных характеристик соответствуют точки А" и В" на входной характеристике. Проекция отрезка А"O" на ось абсцисс определяет амплитуду входного сигнала U вх т , при которой будет обеспечен режим минимальных искажений.



Строго говоря, U вх т , необходимо определять по семейству входных характеристик. Но так как входные характеристики при различных значениях напряжения U кэ , отличаются незначительно, на практике пользуются входной характеристикой, соответствующей среднему значению U кэ =U кэ 0 .

Каскады предварительного усиления Общие сведения. Предварительный усилитель усиливает коле-бания напряжения или тока источника сигнала до значений, кото-рые необходимо подать на вход оконечного каскада для получения в нагрузке заданной мощности. Предварительный усилитель может быть одно- и многокаскадным. Транзисторы в каскадах предвари-тельного усиления включают с ОЭ, а лампы — с общим катодом, что позволяет получить наибольшее усиление . Включение транзистора с ОБ целесообразно во входных каскадах, работающих от источника сигнала с малым внутренним сопротивлением. Для уменьшения нелинейных искажений в каскадах предварительного усиления предпочтителен режим А.

  • По виду связи между каскада-ми (при многокаскадном выполнении усилителей) различают усили-тели с емкостной,
  • трансформаторной
  • гальванической связью (уси-лители постоянного тока).

Усилители с емкостной связью. Усилители с емкостной или ЯС-бвязью имеют широкое применение.. Они просты в конструкции и наладке, дешевы, обладают стабильными характеристиками, на-дежны в работе, имеют небольшие размеры и массу. Типовые схе-мы усилителя на транзисторах и лампах с емкостной связью Частотная характеристика резисторного каскада с емкостной связью может быть разделена на три области частот: нижних НЧ, средних СЧ и верхних ВЧ. В области нижних частот коэффициент усиления Kн снижается (с уменьшением частоты) в ос-новном из-за увеличения сопротивления конденсатора межкас-кадной связи Ср1. Емкость этого конденсатора выбирают достаточ-но большой, что снизит падение напряжения на нем. Обычно низ-кочастотный диапазон ограничивается частотой fH, на которой ко-эффициент усиления снижается до 0,7 среднечастотного значения, т. е. Kн=0,7K0. В области средних частот, составляющих основную часть рабочего диапазона усилителя, коэффициент усиления Kо практически не зависит от частоты. В области верхних частот fB снижение усиления Kв обусловлено емкостью Со=/=Свых+См+Свх (где Свых — емкость усилительного элемента каскада; См — емкость монтажа, Свх — емкость усилительного элемента следующего кас-када) . Эту емкость всегда стремятся свести к минимуму, чтобы ограничить через нее ток сигнала и обеспечить большой коэффициент усиления. Расчет резисторного каскада предварительного усиления. Ис-ходные данные: полоса усиливаемых частот fн-fв = 100-4000 Гц, коэффициент частотных искажений MH

  • 1. Выбор типа транзистора. Ток коллектора каскада, при ко-тором обеспечивается амплитуда входного тока следующего кас-када Iвх.тсл, Iк= (1,25ч- 1,5)IЕх.отсл = .(1,25-7-1,5) 12= 15-5-18 мА. При-мем Iк=15 мА. По току Iк и граничной частоте, которая должна бытьfашга>3fв|Зср = 3fв(Рмин + Рмакс)/2 = 3-4000(30 + 60)/2 =
  • =540000 Гц=0,54 МГц, выбираем для каскада транзистор МП41 со следующими параметрами: Iк=40 мА; UКэ=15 В; |3мин = 30; рмакс=60;fамин = 1МГц.
  • 2. Определение сопротивлений резисторов RK и Ra. Эти сопро-тивления определяют, исходя из падения напряжения на них. При-мем падение напряжения на резисторах R* и Rэ соответственно 0,4 Ек и 0,2 Ек, Выбираем резисторы МЛТ-0,25 270 Ом и МЛТ-0,25 130 Ом.
  • 3. Напряжение между эмиттером и коллектором транзистора в рабочей точке икэо=Ек — !K(RK+Ra) = lQ — 15-10-3(270+130)=4 В. При Uкэо=4 В и Iк=15 мА по статическим выходным характеристи-
  • кам (рис. 94, а), определяем ток базы Iбо=200 мкА в рабочей точке О". По входной статической характеристике транзистора (рис. 94, б) икэ=5 В для Iбо=200 мкА определяем напряжение смещения в ра-бочей точке О/Uбэо=0,22 В.
  • 4. Для определения входного сопротивления транзистора в точке О" проводим касательную к входной характеристике транзистора. Входное сопротивление определяется тангенсом угла наклона каса-тельной
  • 5. Определение-делителя, напряжения смещения. Сопротивле-ние резистора R2 делителя принимают R2=(5-15)Rвх.э. Примем R2=6Rвх.э=6-270 =1620 Ом. Выбираем по ГОСТу резистор МЛТ-0,25 1,8 кОм. Ток делителя в каскадах предварительного уси-ления принимают Iд=(3-10)Iбо=(З-10) -200=600-2000 мкА. При-мем Iд=2 мА. Сопротивление резистора R1 делителя Выбираем по ГОСТу резистор МЛТ-0,25 3,9 кОм.
  • 6. Расчет емкостей. Емкость конденсатора межкаскадной свя-зи определяют, исходя из допустимых частотных искажений Ms, вносимых на низшей рабочей частоте Емкость конденсатора Примем электролитический конденсатор емкостью 47 мкФ с Uраб>ДURЭ=0,2 Eк=0,2-10=2 В.

Усилители с трансформаторной связью . Каскады предварительного усиления с трансформаторной связью обеспечивают лучшее-согласование усилительных каскадов по сравнению с каскадами с резисторной емкостной связью и применяются в качестве инверсных для подачи сигнала на двухтактный выходной каскад. Нередко трансформатор используют в качестве входного устройства.

Схемы усилительных каскадов с последовательным и параллельным включением трансформатора показаны на. Схема с последовательно включенным трансформатором не содержит резистора RK в коллекторной цепи, поэтому обладает более высо-ким выходным сопротивлением каскада, равным выходному сопро-тивлению транзистора, и применяется чаще. В схеме с параллельно включенным трансформатором требуется переходной конденсатор С. Недостатком этой схемы являются дополнительные потери мощно-сти сигнала в резисторе RK и снижение выходного сопротивления вследствие шунтирующего действия этого резистора. Нагрузкой трансформаторного каскада обычно служит относи-тельно низкое входное сопротивление последующего каскада. В этом случае для межкаскадной связи используют понижающие транс форматоры с коэффициентом трансформации n2=*RB/R"H

Частотная характеристика усилителя с трансформаторной связью имеет снижение коэффициента усиления в области нижних и верхних частот. В области нижних частот спад коэффи-циента усиления каскада объясняется уменьшением индуктивного сопротивления обмоток трансформатора, вследствие чего возрастает их шунтирующее де.йствие входной и выходной цепей каскада и снижается коэффициент усиления К=Kо/. На средних частотах влиянием реактивных эле-ментов можно пренебречь. В области верхних частот на коэффициент уси-ления влияют емкость коллекторного перехода Ск и индуктивность рассеи-вания ls обмоток трансформатора. На некоторой частоте емкость Ск и индуктивность Is могут вызвать резонанс напряжения, вследствие че-го на этой частоте возможен подъем частотной характеристики. Иногда этим пользуются для коррекции час-тотной характеристики усилителя.

При решении многих инженерных задач возникает необходимость в усилении электрических сигналов. Для этой цели служат усилители, т.е. устройства, предназначенные для усиления напряжения, тока и мощности. В усилителях обычно используют биполярные и полевые транзисторы и интегральные микросхемы.

Простейшим усилителем является усилительный каскад.

Состав простейшего усилительного каскада:

    УЭ – нелинейный управляемый элемент (биполярный или полевой транзистор);

    R – резистор;

    E – источник электрической энергии.

Усиление основано на преобразовании электрической энергии источника постоянной э.д.с. E в энергию выходного сигнала за счет изменения сопротивления УЭ по закону, задаваемому входным сигналом.

Основные параметры усилительного каскада:

Для многокаскадных усилителей

В зависимости от диапазона усиливаемых частот входных сигналов усилители подразделяют:

    УПТ (усилители постоянного тока) - для усиления медленно изменяющихся сигналов;

    УНЧ (усилители низкой частоты) - для усиления сигналов в диапазоне звуковых частот (20-20000 Гц);

    УВЧ (усилители высокой частоты) - для усиления сигналов в диапазоне частот от десятков килогерц до десятков и сотен мегагерц;

    Импульсные/широкополосные - для усиления импульсных сигналов, имеющих спектр частот от десятков герц до сотен мегагерц;

    Узкополосные/избирательные - для усиления сигналов в узком диапазоне частот.

По способу включения усилительного элемента разделяют:

В случае применения биполярного транзистора в качестве усилительного элемента:

    С общей базой

    С общим эмиттером

    С общим коллектором

В случае использовании полевого транзистора:

    С общим истоком

    С общим стоком

    С общей базой

Усилительный каскад с общим эмиттером.

Усилительный каскад с ОЭ является одним из наиболее распро­страненных усилительных каскадов, в котором эмиттер является общим электродом для входной и выходной цепей.

Схема усилительного каскада с ОЭ для бипо­лярного транзистора структуры п-р-п.


Для коллекторной цепи усилительного каскада в соответствии со вторым законом Кирхгофа можно записать следующее уравнение электрического состояния:

ВАХ коллекторного резистора Rк является линейной, а ВАХ транзистора нелинейна и представляет собой семейство выходных (коллекторных) характеристик эмиттера, включенных по схеме с ОЭ.

Расчет нелинейной цепи, т.е. определение I к , , и U к для различных токов базы I б и сопротивлений резистора R к , можно провести графически. Для этого на семействе выходных характеристик транзистора необходимо провести прямую из точки E к на оси абсцисс ВАХ резистора Rк, удовлетворяющую уравнению .

Точки пересечения нагрузочной прямой с линиями выходных характеристик дают графическое решение уравнения для данного R б и различных I б .

По этим точкам можно определить ток в коллекторной цепи, напряжения U кэ и .

Сопротивление резистора R к выбирают исходя из требований усиления входного сигнала. При этом необходимо учитывать, чтобы нагрузочная прямая проходила левее и ниже допустимых значений U к max , I к max , P к max и обеспечивала достаточно протяженный линейный участок переходной характеристики.

Эквивалентная схема замещения усилительного каскада с ОЭ и его параметры.

Считая , можно записать эти уравнения в виде

Решая совместно эти уравнения, получим

Знак минус означает, что выходное напряжение находится в противофазе с входным. Получим формулу для коэффициента усиления по напряжению ненагруженного усилительного каскада с общим эмиттером :

Так как . Поэтому

Входное сопротивление усилительного каскада с ОЭ на низких частотах:

Выходное сопротивление усилительного каскада с ОЭ определяется выражением

Температурная стабилизация усилительного каскада с ОЭ

С
ущественным недостатком транзисторов является их зависимость от температуры. С повышением температуры за счет возрастания числа неосновных носителей заряда в полупроводнике увеличивается коллекторный ток транзистора. Это приводит к изменению выходных характеристик транзистора. При увеличении коллекторного тока наΔI k , коллекторное напряжение уменьшается на . Это вызывает смещение рабочей точки транзистора, что может вывести ее за пределы линейного участка характеристик транзистора, и нормальная работа усилителя нарушается.

Для уменьшения влияния температуры на работу усилительного каскада с общим выпрямителем, в его эмиттерную цепь включают резистор R э , шунтированный конденсаторомС э . В цепь базы для создания начального напряжения включают делитель напряжения.

Увеличение тока эмиттера из-за повышения температуры приводит к возрастанию падения напряжения на сопротивлении R э , что вызывает снижение напряжения , а это вызывает уменьшение тока базы. Ток эмиттера и коллектора сохраняют положение рабочей точки на линейном участке характеристики.

Влияние изменения тока коллектора в выходной цепи на входное напряжение транзистора называют отрицательной обратной связью по постоянному току. При отсутствии конденсатора работа усилительного каскада изменяется не только по постоянному току, но и по переменной составляющей.

Усилительный каскад с ОК

К
оллектор транзистора через источник питания соединен непосредственно с общей точкой усилителя, т.к. падение напряжения на внутреннем сопротивлении источника незначительно. Можно считать, что входное напряжение подается на базу транзистора относительно коллектора через конденсаторС 1 , а выходное напряжение равно падению напряжения наR э , которое снимается с эмиттера относительно коллектора. Резистор задает начальный ток смещения цепи базы транзистора, который определяет положение рабочей точки в режиме покоя. При наличииU вх в цепи появляется переменная составляющая , которая создает падение напряжения наR э ( )

Коэффициент усиления по напряжению усилительного каскада с ОК меньше единицы, поэтому его правильнее называть коэффициентом передачи напряжения.

Так как входное значение K u близко к единице, входное сопротивление эмиттерного повторителя много больше входного сопротивленияh 11 транзистора и достигает нескольких сотен килоом.

Выходное сопротивление эмиттерного повторителя имеет значение порядка десятков ом. Таким образом, эмиттерный повторитель обладает очень большим входным и малым выходным сопротивлением, следовательно, его коэффициент усиления по току может быть очень высоким.

Усилительный каскад на полевом транзисторе

У
силительные каскады на полевых транзисторах обладают большим входным сопротивлением.

В этом каскаде резистор R c , с по­мощью которого осуществляется усиление, включен в цепь стока. В цепь истока включен резистор R и , создающий необходимое паде­ние напряжения в режиме покояU 30 , являющееся напряжением сме­щения между затвором и истоком.

Резистор в цепи затвора R 3 обе­спечивает в режиме покоя равенство потенциалов затвора и общей точки усилительного каскада. Следователь­но, потенциал затвора ниже потен­циала истока на величину падения напряжения на резисторе R и от по­стоянной составляющей токаI и0 .Таким образом, потенциал затвора является отрицательным относитель­но потенциала истока.

Входное напряжение подается на резистор R 3 через раздели­тельный конденсатор С. При подаче переменного входного напряже­ния в канале полевого транзистора появляются переменные состав­ляющие тока истокаi и и тока стокаi с, причемi и i с. За счет паде­ния напряжения на резисторе R и от переменной составляющей тока i и , переменная составляющая напряжения между затвором и истоком, усиливаемая полевым транзистором, может быть значи­тельно меньше входного напряжения:

Это явление, называемое отрицательной обратной связью, при­водит к уменьшению коэффициента усиления усилительного кас­када. Для его устранения параллельно резистору R и включают конденсатор С и, сопротивление которого на самой низкой частоте усиливаемого напряжения должно быть во много раз меньше со­противления резистора R н . При этом условии падение напряжения от тока истокаi и на цепочке R и -С и, называемой звеном автомати­ческого смещения, очень небольшое, так что по переменной состав­ляющей тока исток можно считать соединенным с общей точкой усилительного каскада.

Выходное напряжение снимается через конденсатор связи С с между стоком и общей точкой каскада, т. е. оно равно переменной составляющей напряжения между стоком и истоком.

Обратные связи в усилителях

О
братной связью в усилителях называют подачу части (или всего) выход­ного сигнала усилителя на его вход.

Обратные связи в усилителях обычно создают специально. Од­нако иногда они возникают самопроизвольно. Самопроизвольные обратные связи называют пара­зитными.

Если при наличии обратной связи входное напряжение u вх складывается с напряжением об­ратной связи u ос , в результате чего на усилитель подается уве­личенное напряжение u 1, то такую обратную связь называют поло­жительной.

Если после введения обратной связи напряжения u 1 на входе иu вых на выходе усилителя уменьшаются, что вызывается вычита­нием напряжения обратной связи из входного напряженияu вх, то такую обратную связь называют отрицательной.

Все обратные связи делятся на обратные связи по напряжению и по току. В обратной связи по напряжениюu oc =βu вых, где β - коэффициент передачи четырехполюсника обратной связи. В об­ратной связи по токуu ос = R ос i вых, гдеR ос - взаимное сопротив­ление выходной цепи и цепи обратной связи. Кроме того, все об­ратные связи подразделяют на последовательные, при которых цепи обратной связи включают последовательно с входными цепями уси­лителя, и параллельные, когда цепи обратной связи включают параллельно входным цепям усилителя.

Влияние отрицательной обратной связи на коэффициент усиления.

Для усилителя без обратной связи

Вывод: введение отрицательной обратной связи уменьшает коэффициент усиления усилителя в 1+βК раз.

Введение положительной обратной связи по­вышает коэффициент усиления усилителя. Однако положительная обратная связь в электронных усилителях практически не применяется, так как при этом, как будет показано далее, стабильность коэффициента усиления значительно ухуд­шается.

Несмотря на снижение коэффициента усиления, отрицательную обратную связь в усилителях применяют очень часто. В результате введения отрицательной обратной связи существенно улучшаются свойства усилителя:

а) повышается стабильность коэффициента усиления усилителя при изменениях параметров транзисторов;

б) снижается уровень нелинейных искажений;

в) увеличивается входное и уменьшается выходное сопротивле­ния усилителя, и т. д.

Для оценки стабильности коэффициента усиления усилителя с обратной связью следует определить его относительное изменение:

Вывод: всякое изменение коэффициента усиления ослабляется действием отрицательной обратной связи в 1+βК раз.

Если значение βК много больше единицы, что представляет собой глубокую отрицательную обратную связь, то

В случае положительной обратной связи стабильность коэффициента усиления ухудшается:

Введение последовательной обратной связи по напряжению увеличивает входное сопротивление.

Схема усилителя с параллельной обратной связью:

При глубокой отрицательной обратной связи

3) магнитная связь, появляющаяся при близком расположении входных и выходных трансформаторов усилителя.

Усилители постоянного тока

Устройства, предназначенные для усиления сигнала очень низких частот (порядка долей Гц), имеющие амплитудно-частотную характеристику до самых низких частот называются усилителями постоянного тока (УПТ).

Требования к характеристикам УПТ:

    в отсутствие входного сигнала должен отсутствовать выходной сигнал;

    при изменении знака входного сигнала должен изменять знак и выходной сигнал;

    напряжение на нагрузочном устройстве должно быть пропорционально входному напряжению.

Наилучшим образом данным требованиям удовлетворяют УПТ, построенные на дифференциальных балансных каскадах. Они так же обеспечивают эффективную борьбу с так называемым дрейфом нуля УПТ. Построены по принципу четырехплечевого моста.

У
равнение баланса моста:

При изменении Ек баланс не нарушается и в нагрузочном резисторе R н ток равен нулю. С другой стороны, при пропорциональном изменении сопротивлений резисторов R 1 , R 2 или R 3 , R 4, баланс моста тоже не нарушается. Если заменить резисторы R 2 , R 3 транзисторами, то получим дифференциальную схему, очень часто применяемую в УПТ.

В
дифференциальном усилителе сопротивления резисторов R 2 , R 3 в коллекторных цепях транзисторов выбирают равными, режимы обоих транзисторов устанавливают одинаковыми. В таких усилителях подбирают пары транзисторов со строго идентичными характеристиками.

На стабильность электрических режимов существенное влияние оказывает сопротивление резистора R 1 , который стабилизирует ток транзисторов. Чтобы можно было использовать резистор с большим сопротивлением R l , увеличивают напряжение источника питания Ек до значения Е 2 Е 1 , а в интегральных микросхемах часто вместо резистора R 1 применяют стабилизатор постоянного тока, который выполняют на 2-4 транзисторах.

Переменный резистор R п служит для балансировки каскада (для установки нуля). Это необходимо в связи с тем, что не удается подобрать два абсолютно идентичных транзистора и резисторы с равными сопротивлениямиR 2 , R 3 . При изменении положения движка потенциометра R п изменяются сопротивления резисторов, включенных в коллекторные цепи транзисторов, и, следовательно, потенциалы на коллекторах. Перемещением движка потенциометраR п добиваются нулевого тока в нагрузочном резисторе R н в отсутствие входного сигнала.

При изменении э. д. с. источника коллекторного питания Е 1 или смещения Е 2 изменяются токи обоих транзисторов и потенциалы их коллекторов. Если транзисторы идентичны и сопротивления резисторов R 2 , R 3 в точности равны, то тока в резисторе R H за счет изменения э. д. с. E l , Е 2 не будет. Если транзисторы не совсем идентичны, то появится ток в нагрузочном резисторе, однако он будет значительно меньше, чем в обычном, небалансном УПТ.

Аналогично изменения характеристик транзисторов вследствие изменения температуры окружающей среды практически не будут вызывать тока в нагрузочном резисторе.

В то же время при подаче входного напряжения на базу транзистора Т 1 изменятся его коллекторный ток и напряжение на его коллекторе, что вызовет появление напряжения на нагрузочном резисторе R н.

При тщательном подборе транзисторов и резисторов, при стабилизации напряжений источников питания дрейф удается снизить до 1-20 мкВ/°С или при работе в температурном диапазоне от -50 до +50°С составит 0,1-2 мВ, т. е. в сравнении с небалансным УПТ он может быть уменьшен в 20-100 раз.

По таким же схемам можно выполнять усилители на полевых транзисторах. Аналогичные балансные схемы могут быть построены на основе эмиттерных и истоковых повторителей.

Операционные усилители

Операционный усилитель – дифференциальный усилитель постоянного тока с большим коэффициентом усиления, предназначенный для выполнения различных операций над аналоговыми величинами при работе в схемах с отрицательной обратной связью.

ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Схема и условное графическое обозначение интегральной микросхемы К140УД8:

Первый каскад на полевых транзисторах VТ 1 VТ 11 иVT 2 ,VT 9 , с каналом р-типа является симметричным дифференциальным каскадом с нагрузочными транзисторамиVТ 3 ,VT 10 . ТранзисторыVТ 4 ,VТ 5 образуют стабилизатор тока в истоковой цепи первого каскада.

Второй каскад - несимметричный дифференциальный каскад на двух эмиттерных повторителях - выполнен на транзисторах VT 7 ,VТ 12 . Связь между первым и вторым каскадами непосредственная.

Н
а составном транзистореVТ 15 , выполнен усилитель напряжения, нагрузкой которого служит полевой транзисторVT 17 . На выходе микросхем применен бестрансформаторный усилитель мощности на составных транзисторахVТ 20 ,VТ 22 иVТ 23 ,VТ 24 .

Микросхема К140УД8 имеет два входа (4- неинвертирующий, 3 - инвертирующий) и один выход (вывод 7), общий вывод 1 и выводы подсоединения питающих напряжений: 8 - для +E 1 и5- для -Е 2 . Выводы 6используют для балансировки микро­схемы с помощью переменного резистора сопротивлением 10 кОм.

УПТ с преобразованием напряжения

Способ снижения дрейфа основан на двойном преобразовании усиливаемого напряже­ния.

Структурная схема:

Модулятор предназначен для преобразования медленно изменяю­щегося входного напряжения в переменное напряжение, амплитуда которого пропорциональна входному напряжению, причем при из­менении знака входного напряжения изменяется фаза переменного напряжения.

Uвх преобразуется с частотой от 50 Гц до 20 МГц.

Существует много различных схем модуляторов. Наиболее рас­пространенными из них являются:

    модулятор с вибропреобразователем;

    модулятор на транзисторах.

М
одулятор с вибропреобразователем пред­ставляет собой маломощный электромагнитный контактор, периодически (с частотой тока, питающего катушку электромагнита) подключающий входное напряжение то к верхней, то к нижней (по схеме) половине первичной обмотки трансформатора. При этом ток в первичной обмотке изменяет направление. Во вторичной обмотке трансфор­матора возникает переменное напряжение. Обычно применяется повышающий трансфор­матор с коэффициентом трансформации до 10, поэтому амплитуда напряжения в не­сколько раз больше входного напряжения.

Достоинство вибропреобразователя - не­большой дрейф, который определяется в основном термо-э. д. с. контактной пары и мо­жет быть снижен до 0,01-0,1 мкВ/ч (0,1- 0,5 мкВ/сут). Входное сопротивление равно 1-10 кОм.

Д – демодулятор – предназначен для преобразования переменного напряжения на входе, медленно изменяющегося постоянного напряжения на выходе.

Преимущества:

Низкий дрейф нуля;

Недостатки:

Плохая АЧХ в области высоких частот.

Модулятор, стоящий на входе усилителя, хорошо преобразует постоянные и медленно изменяющиеся напряжения. При увели­чении частоты входного напряжения работа модулятора ухудша­ется. В то же время на выходе демодулятора применяется сглаживающий фильтр. При частоте сигнала, приближающейся к частоте опорного напряжения u оп, фильтр не может отделить сигнал от опорного напряжения.

Для расширения диапазона частот применяют высокочастотные преобразователи, которые позволяют повысить частоту f оп до 0,5- 10 МГц.

Комбинированные усилители сочетают в себе преимущества усилителей без преобразователя напряжения и с ним.

Структурная схема комбинированного УПТ:

Комбинированный усилитель имеет дрейф на уровне УПТ с преобразованием спектра сигнала, а амплитудно-частотную ха­рактеристику не хуже, чем усилитель без преобразования спектра сигнала. Некоторая неравномерность амплитудно-частотной харак­теристики в области средних частот легко выравнивается за счет отрицательной обратной связи. (КД140УД13).

Операционные усилители являются основой большого класса усилителей со специальными частотными характеристиками. Это достигается применением различных цепей обратной связи.

В операционных усилителях обратная связь отрицательная, если она подается с выхода усилителя на инвертирующий вход. Действительно, при этом напряжение U oc , находящееся в фазе сU вых, будет в противофазе с входным напряжением на инверти­рующем входе. И наоборот, обратная связь является положитель­ной, если она подается на неинвертирующий вход. При последо­вательной обратной связи входной сигналu вх и сигнал обратной связи подаются на разные входы микросхемы, при параллельной - на один.

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12